
Shifting Left Chaos Testing

Pablo Chacin
Chaos Engineering Lead @ k6
Grafana Labs

Agenda

Why achieving reliability in modern applications is hard?

Chaos Engineering and the obstacles in adopting it

Introducing Chaos Testing

A tale of an incident

Chaos Testing with k6 disruptor extension

Complex
architectures

and
infrastructures

Hard to predict
failure modes

Inadequate
testing tools and

practices

Why achieving reliability in is hard?

How organizations can build confidence in their
ability to withstand failures?

��
Chaos

Experiments
Incident
Enacting

Learn from
Incidents

Production systems

Adoption
bar is too

high

Blast radius
is hard to
control

Limitations of Chaos Engineering

Requires
specialized

tools

Results are
hard to

reproduce

How more organizations can build confidence in
their ability to withstand failures?

Chaos
Testing

☑
☑
☒ ��Shift left

Production systemsDevelopment

Learn from
Incidents

Is a software testing technique which
introduces errors to a system to
ensure it can withstand and recover
from those conditions

Fault Injection

From the distributed system perspective, almost all
interesting availability experiments can be driven by
affecting latency or response type.

Nora Jones

Casey Rosenthal

Chaos Engineering, O’Reilly

According to a study of failures in real
world distributed systems:

92% of the catastrophic system
failures are the result of incorrect
handling of non-fatal errors

In 58% of the cases the resulting
faults could have been detected
through simple testing of error
handling code

How effective is
testing known
errors?

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-Intensive Systems, Yuan et al. USENIX OSDI 2014

In 35% of the cases, the error handling
code fall into one of three patterns:

Overreacted, aborting the system
under non-fatal errors

Was empty or only contained a log
printing statement

Contained expressions like “FIXME” or
“TODO” in the comments.

How hard it to
improve?

Incorporate the principles of chaos
engineering early into the
development process as an integral
part of the testing practices

Shifting the emphasis from
experimentation to verification

From uncovering unknowns faults to
ensuring proper handling of known
faults

Chaos Testing

Continuous Reliability Improvement

Chaos
Testing

☑
☑
☒

Chaos
Experiments

Incident
Enacting

��Shift left

Production systemsDevelopment

Progress
towards

Improve

Learn from
Incidents

The four tenets of Chaos Testing

Incremental
adoption

Application
Centric

Controlled
Chaos

Chaos as
Code

< >⚙

Chaos Testing
in action

Intro Slides

https://github.com/microservices-demo/microservices-demo

Sock Shop application

● Microservices architecture
● Http-based communication

between services
● Polyglot (Go, Java, JS, …)
● K8s-ready

https://github.com/microservices-demo/microservices-demo

https://github.com/microservices-demo/microservices-demo

Sock Shop application

● Microservices architecture
● Http-based communication

between services
● Polyglot (Go, Java, JS, …)
● K8s-ready

https://github.com/microservices-demo/microservices-demo

Fictitious Post Incident Review

Long running queries in the
Catalogue service’s DB caused
delays in the requests the
exhaustion of DB sessions that
resulted in errors (HTTP 500)

Catalogue service team will
investigate the incident to
address the root cause

However, the front-end team
wonders…

��

How would similar
incidents affect our
service?

Let’s start with a load test for the Front-end service

Front-end
Service

Catalogue
Service

K6

Test

Load

Metrics SUT

k6.io

Open source reliability testing tool

Programmable tests using Javascript

Covers different testing needs: load,

end-to-end, synthetic, chaos

Extensible using a growing catalog of

extension (e.g. Kafka, Redis, K8s, Sql…)

Can send test results to common

backends such as prometheus

Response
Validations

Workload
model

SLOs

Check Scenario Thresholds

Key concepts

Functions

Simulated user
flow

Load test for the Front-end service
export function requestProduct() {
 const item = products[Math.floor(Math.random()
 * products.length)];
 const resp = http.get(`${url}/${item}`);
 const body = JSON.parse(resp.body);
 check(body, {
 'No errors': (body) => !('error' in body),
 });
}

export const options = {
 scenarios: {
 load: {
 executor: 'constant-arrival-rate',
 rate: 20,
 preAllocatedVUs: 5,
 maxVUs: 100,
 exec: 'requestProduct',
 startTime: '0s',
 duration: '60s',
 }
 }
} Here is where we

apply load

This function
makes a request
to the front-end
service

Also checks for
errors in the
response

Let’s run this test and check performance metrics …

Now, let’s add some chaos to this test

Front-end
Service

K6

Test

Catalogue
Service

Load

Metrics SUT

Let’s add some chaos to this test

Front-end
Service

K6 +
xk6-disruptor

Test

Catalogue
Service

Faults

Load

Metrics SUT

xk6-disruptor
An extension that adds
fault injection capabilities
to Grafana k6

How the disruptor works

Front-end
Service

K6 +
xk6-disruptor

Test

Catalogue
Service

Load

Pod

Install
agent

Chaos test for the Front-end service
export function requestProduct() {
 const item = products[Math.floor(Math.random()
 * products.length)];
 const resp = http.get(`${url}/${item}`);
 const body = JSON.parse(resp.body);
 check(body, {
 'No errors': (body) => !('error' in body),
 });
}

export function injectFaults(data) {
 const fault = {
 averageDelay: 100,
 errorRate: 0.1,
 errorCode: 500,
 };

 const disruptor = new ServiceDisruptor(
 'catalogue',
 'sock-shop'
);
 disruptor.injectHTTPFaults(fault, 60);
}

export const options = {
 scenarios: {
 load: {
 executor: 'constant-arrival-rate',
 rate: 20,
 preAllocatedVUs: 5,
 maxVUs: 100,
 exec: 'requestProduct',
 startTime: '0s',
 duration: '60s',
 },

 fault: {
 executor: 'shared-iterations',
 iterations: 1,
 vus: 1,
 exec: 'injectFaults',
 startTime: '0s',
 }

 }
}

Here we add the
fault injection to the
test

Fault definition

Inject fault

Select target
service

This function
injects faults

Let’s run this chaos test…

Front-end
Service

K6 +
xk6-disruptor

Test

Catalogue
Service

Faults

Load

Metrics SUT

How this test
helps the
front-end team?

Uncover improper error handling logic

Validate different solutions until obtaining
an acceptable error rate

Fine-tune the solution and avoid issues
such as retry storms

Chaos testing principles in action

● A load or functional test can be reused to test the system under
turbulent conditions

● These conditions are defined in terms that are familiar to developers:
latency and error rate

● The test has a controlled effect on the target service
● The test is repeatable and the results are predictable
● The fault injection is coordinated from the test code
● The fault injection does not add any operational complexity

Final remarks

The ability to operate reliably should not
be a privilege of the technology elite

Chaos Engineering can be democratized
by promoting the adoption of Chaos
Testing

To be effective, Chaos Testing must be
compatible with the existing testing
practices used by development teams

Make Chaos Engineering practices
accessible to a broad spectrum of
organizations by building a solid
foundation from which they can
progress towards more reliable
applications.

Our Goal

Thank you for attending!

Additional resources

● xk6-disruptor project

https://github.com/grafana/xk6-disruptor

● xk6-disruptor documentation

https://k6.io/docs/javascript-api/xk6-disruptor

● Chaos testing microservices with xk6-disruptor

https://k6.io/blog/chaos-testing-microservices-with-xk6-disruptor

https://github.com/grafana/xk6-disruptor
https://k6.io/docs/javascript-api/xk6-disruptor
https://k6.io/blog/chaos-testing-microservices-with-xk6-disruptor

Shifting Left Chaos Testing

Pablo Chacin
Chaos Engineering Lead @ k6
Grafana Labs

