
Graceful Degradation: Keeping The

Lights On When Everything Goes Wrong

Tanveer Gill
CTO, FluxNinja

 https://www.linkedin.com/in/gill-tanveer/

 @GillTanveer89

Agenda

1. Understanding the Consequences of Lack of Load Management in Microservices

2. Throw more compute at the problem? Examining the Limitations of Auto-Scaling

3. Concurrency limits are effective but challenging to implement

4. Smart concurrency limits and prioritized load shedding for any service with Aperture

What happens when a service gets overwhelmed?

Overload

Responses

Requests

Responses

Requests

Timeouts

Regular load

Service

Service

What happens when a service gets overwhelmed?

Overload

Responses

Requests

Responses

Requests

Timeouts

Regular load

Service

Service

Little’s Law

L = λW

L = Requests in progress
λ = Average Throughput
W = Average Response time

Visualizing the Impact of Overload on a Service

Overloads lead to cascading failures

Load
Balancer

Across services

Laterally within a service

Service B Service A

Service A
Service A

Service A

Overloads lead to cascading failures

Load
Balancer

Across services

Laterally within a service

Service B Service A

Service A
Service A

Service A

Overloads lead to cascading failures

Load
Balancer

Across services

Laterally within a service

Service B Service A

Service A
Service A

Service A

Overloads lead to cascading failures

Load
Balancer

Across services

Laterally within a service

Service B Service A

Service A
Service A

Service A

Overloads lead to cascading failures

Load
Balancer

Across services

Laterally within a service

Service B Service A

Service A
Service A

Service A

Overloads lead to cascading failures

Load
Balancer

Across services

Laterally within a service

Service B Service A

Service A
Service A

Service A

Limitations of auto-scale

● Slow to respond

● Limited by resource usage quotas

● May contribute to load amplification at dependencies

Limitations of auto-scale

● Slow to respond

● Limited by resource usage quotas

● May contribute to load amplification at dependencies

“This traffic surge caused a classic cascading failure scenario. Numerous
backing services for the API—Cloud Datastore, Pokémon GO backends and

API servers, and the load balancing system itself—exceeded the capacity
available to Niantic’s cloud project. The overload caused Niantic’s backends to
become extremely slow (rather than refuse requests), manifesting as requests

timing out to the load balancing layer”

— Google SRE Workbook: Case Study 1: Pokémon GO on GCLB

https://sre.google/workbook/managing-load/

Managing load with concurrency limits

Responses

Requests

Responses

Requests

Load shed

Regular load

Overload

Service A

Service

Visualizing the effect of concurrency limits

Challenges with implementing concurrency limits

● Determining the ideal maximum number of concurrent requests
○ Setting the limit too low can result in rejected requests
○ Setting the limit too high can lead to slow and unresponsive servers

● Difficulty in determining the ideal value in a constantly changing microservices
environment

Challenges with implementing concurrency limits

● Determining the ideal maximum number of concurrent requests
○ Setting the limit too low can result in rejected requests
○ Setting the limit too high can lead to slow and unresponsive servers

● Difficulty in determining the ideal value in a constantly changing microservices
environment

● Need for dynamic and adaptive concurrency limits to adapt to changing workloads
and dependencies

Implementing concurrency limits with Aperture

ServiceResponses

Requests

Aperture
Agent

Admit or DropServe
Request?

● Open source reliability automation platform

● Declarative policy language visualized as a circuit graph

● Used for concurrency & rate limiting, workload prioritization, auto-scaling

● Integrates with popular language frameworks

● Supports seamless insertion via service mesh (Envoy)

Aperture Policy

Test traffic scenario

Service AK6
5 users for 2min
30 users for 1min
5 users for 2min
30 users for 1min
5 users for 2min
30 users for 1min
// repeat…

Performance before and after Aperture’s policy

Prioritized Load Shedding

Policy: Subscribed users are 4x higher priority than guest users

Conclusion

• Designing microservices to gracefully handle overload improves application reliability
• Aperture is a platform for reliability automation
• Aperture brings rate limits, concurrency limits, and load-based auto-scaling to any

service
• Aperture integrates with Prometheus and does continuous signal processing on metrics

for control and automation
• Check out the Aperture project on GitHub and provide feedback:

https://github.com/fluxninja/aperture

https://github.com/fluxninja/aperture

