
George Hantzaras
Engineering Director, MongoDB

Dan Mckean
Sr Product Manager, MongoDB

Building a self-
service DBaaS for
your Internal
Developer Platform
Conf42: Cloud Native 2023

Agenda
● Kubernetes as the platform of platform
● Building and managing a DBaaS in your

Internal Developer Platform
● Why build a DBaaS (and the risks)
● The criticality of enabling self-service in a DBaaS
● Atlas and our Atlas Operator
● Putting it all together and a demo

Kubernetes as a
Platform of Platforms

Why Kubernetes?

95% of Internal Developer Platforms (IDPs) are built on top of Kubernetes.

Kubernetes is an open-source container-orchestration system for automating
application deployment, scaling, and management.

https://internaldeveloperplatform.org/

https://internaldeveloperplatform.org/

Why Kubernetes?
It offers:

● Highly flexible networking

● Storage orchestration

● High availability

● Self-healing

● Easier migration between k8s-compliant vendors

● High degree of customization & extensibility
(Kubernetes Operators and Custom resources)

Kubernetes Operators & Custom Resources

An Operator extends the native Kubernetes control plane with custom logic that
helps manage a lot of the essential tasks that are bespoke to a specific product…
(Like MongoDB)

It's usually paired with Custom Resources, defined in Kubernetes using Custom
Resource Definitions.

These custom resources allow for the creation of new types of Kubernetes Object,
which can be monitored by the Operator, which can use them to take action…

Kubernetes Operators - External Resources

● Operators can also be used to manage resources external to Kubernetes

● Often done using custom resources in the cluster and the Operator calling the
external service APIs to implement changes

● Allows the use of the same tooling, processes, permissions, and automation as
deployments within Kubernetes

Building and managing
a DBaaS in your IDP

TLDR; IDP

● Built to enable developer self-service of platform infrastructure

● Typically built by an Ops teams, and used by developers

● Provides a common process and method of engaging with the platform,
often via templates

● This automates recurring tasks such as spinning up environments and resources
and helps enforcing standards (e.g. security)

● IDPs Often abstract away the complexity of the underlying platform technologies
from the developer - saving everyone from needing to be an expert

● Development teams gain autonomy by being empowered to spin up fully
provisioned environments and manage them with a minimum of effort or
complexity

● IDPs can be built or bought

TLDR; DBaaS

● Database as a Service is often one of the most critical IDP
components

● Most applications need a database, and databases can be complex
to deploy and manage

● Simplifying creation and management of databases becomes
incredibly valuable - especially day 2 operations

DBaaS - Complexity and risks

● How much configuration to expose?
○ Security, sizing, performance, backup, sharding, resilience…

● Troubleshooting

● Enabling development teams to self-serve

Self-service

● Self-service is nearly always faster

● Central teams can focus on support and improvements

● Self-service empowers users

● Common methods:
 - Published assets (e.g. Helm charts)
 - GitOps
 - Portal or marketplace

Tools for building
our DBaaS

How does it work

1

3

2

1. It start with the
developer defining what
database his application
needs

2. The database request is
translated into a resource that
Kubernetes can deploy and
manage

3. Kubernetes creates
our database
deployment

Atlas API Call

Kubernetes
Cluster

Atlas Operator

kubectl

Atlas

Smart User

Helm charts

Atlas Kubernetes Operator

Under the hood

OPERATOR

Deploying a
cloud
database

apiVersion: atlas.mongodb.com/v1

kind: AtlasDeployment

metadata:

 name: my-atlas-cluster

 labels:

 app.kubernetes.io/version: 1.6.0

spec:

 projectRef:

 name: my-project

 deploymentSpec:

 name: "Test-cluster"

 providerSettings:

 instanceSizeName: M10

 providerName: AWS

 regionName: US_EAST_1

Database request is defined and pushed

DBaaS infrastructure repo

ArgoCD for building a self-service
experience

ArgoCD for building a self-service
experience

Putting it all together

Prerequisites

Setup Atlas
- Atlas account

- Atlas API key

Setup Kubernetes
- Create a Kubernetes cluster

- Install the Atlas Kubernetes Operator

Setup ArgoCD
- Install ArgoCD

- Create a dedicated Infrastructure as Code
repository

- Create an Argo application to watch the
repository

What your DBaaS look like

DBaaS infrastructure repo

Thank you for
your time.

