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But splitting into microservices has drawbacks:
● Versioned upgrades
● Configuration complexity multiplied
● Added IDL and protocol complexity
● API hardening
● E2E and local testing
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Bridges the gap between the two:
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Performance
● Efficient serialization and transport
● Colocation
● Routing
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Application
A set of components  that call each other.

Under the hood: a code generator to weavify 
the application (e.g., generate encoding, stubs, 
etc.)

type Rock interface { … }

type Paper interface { … }

type Scissors interface { … }

Write as a modular binary

// Components …



Application

type Rock interface { … }

type Paper interface { … }
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Application

Run Locally Run Distributed

type Rock interface { … }

type Paper interface { … }

type Scissors interface { … }

Write as a modular binary

// Components …

Rock

Paper

Scissors
Scissors

Rock

Paper

A set of components  that call each other.

Under the hood: a code generator to weavify 
the application (e.g., generate encoding, stubs, 
etc.)
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Application
How to define a component?
● Represented as a Go interface
● Args/results must be serializable

How to implement a component?
● As a Go struct
● The implementation should embed 

weaver.Implements[T]

// Cache component definition.
type Cache interface {
  Put(ctx context.Context, key, value string) error
  ...
}

// Cache component implementation.
type cache struct {
  weaver.Implements[Cache] // to weavify the component
  data map[string]string
}

func (c *cache) Put(_ context.Context, key, value string) error {
  c.data[key] = value
  return nil
}
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Application
How to define a component?
● Represented as a Go interface
● Args/results must be serializable

How to implement a component?
● As a Go struct
● The implementation should embed 

weaver.Implements[T]

How to instantiate a component?
● weaver.Init(...) to initialize the 

application
● weaver.Get[T]returns a handle to 

the component  

How to interact with a component?
● Simple method calls

// Cache component definition.
type Cache interface {
  Put(ctx context.Context, key, value string) error
  ...
}

// Cache component implementation.
type cache struct {
  weaver.Implements[Cache] // to weavify the component
  data map[string]string
}

func (c *cache) Put(_ context.Context, key, value string) error {
  c.data[key] = value
  return nil
}

func main() {
  ctx := context.Background()
  root := weaver.Init(ctx) // Initialize the app.
  cache, err := weaver.Get[Cache](root)
  …
  err = cache.Put(ctx, “mykey”, “myvalue”)
  …
}
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How to deploy?

Single Config
● Tiny

Release a single binary
[serviceweaver]
binary = "./game"
colocate = [  // optional
  ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

// weaver.toml
// Game config file.

// Rock Paper Scissors app config.
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Single Config
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Release a single binary // weaver.toml
// Game config file.[serviceweaver]

binary = "./game"
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  ["Rock", "Paper"], ["Scissors"]
]
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// Rock Paper Scissors app config.

$ go run .                         # Run in a single process.
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How to deploy?

Single Config
● Tiny
● Per deployment

Release a single binary // weaver.toml
// Game config file.

// Deployments config.

$ go run .                         # Run in a single process.
$ weaver multi deploy weaver.toml  # Run in multiple processes.
$ weaver ssh deploy weaver.toml    # Run in the cluster.

[ssh]
locations_file = "./ssh_locations.txt"

// Rock Paper Scissors app config.
[serviceweaver]
binary = "./game"
colocate = [  // optional
  ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

Deployment commands for
● Local
● Multiple machines
● Cloud

9



How to deploy?

Single Config
● Tiny
● Per deployment

Deployment commands for
● Local
● Multiple machines
● Cloud

Release a single binary // weaver.toml
// Game config file.

// Deployments config.

$ go run .                         # Run in a single process.
$ weaver multi deploy weaver.toml  # Run in multiple processes.
$ weaver ssh deploy weaver.toml    # Run in the cluster.
$ weaver gke deploy weaver.toml    # Run in the cloud.

[ssh]
locations_file = "./ssh_locations.txt"

// Rock Paper Scissors app config.

[gke]
regions = ["us-west1"]
public_listener = [
  {name = "game", hostname = "game.example.com"},
]

[serviceweaver]
binary = "./game"
colocate = [  // optional
  ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional
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How is it deployed?
     component Rock
     component Paper

  component Scissors

Rock

Paper
weaver libraries

Scissors
weaver libraries

Modular binary

 Processes
(aka microservices)

Runtime

Manages the 
interaction between 
the app and the 
runtime

Local, SSH, GKE 
deployers
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Instrumentation

func (c *cache) Put(_ context.Context, key, value string) error {
  c.Logger().Info(“Add”, “key”, key, “value”, value)
  c.data[key] = value
  return nil
}

...

Logging
● Each component has an associated logger
● Structured logging: cat, tail, search, filter logs

$ weaver gke logs --follow  # Follow all the logs. 
$ weaver gke logs ‘app==“cache” && level==”info” # Only info logs.                     
$ … 
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$ … 

Metrics
● Counters, gauges, and histograms
● Includes framework metrics
...

func (c *cache) Put(_ context.Context, key, value string) error {
  c.data[key] = value
  putCount.Add(1.0)
  return nil
}

var putCount = weaver.NewCounter(“put_count”, “Number of Put ops.”) 

...
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...

Tracing
● Relies on OpenTelemetry
● Once enabled, all HTTP requests and component 

method calls are automatically traced

func main() {
  …
  // Create an otel handler to enable tracing.
  otelHandler := otelhttp.NewHandler(http.DefaultServeMux, “http”)
  http.Serve(lis, otelHandler)
}

...
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  return nil
}

var putCount = weaver.NewCounter(“put_count”, “Number of Put ops.”) 

...

Tracing
● Relies on OpenTelemetry
● Once enabled, all HTTP requests and component 

method calls are automatically traced

func main() {
  …
  // Create an otel handler to enable tracing.
  otelHandler := otelhttp.NewHandler(http.DefaultServeMux, “http”)
  http.Serve(lis, otelHandler)
}

...

Profiling
● Profile each individual process and aggregates into a 

single profile
● Captures the performance of the app as a whole
$ weaver gke profile cache             # CPU profile. 
$ weaver gke profile –-type=heap cache # Heap profile.                     
$ … 
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Monitoring
Dashboards Integration with Monitoring Frameworks

Bird’s eye view

Tracing:
● Perfetto
● Google Cloud Trace

Metrics:
● Prometheus
● Metrics Explorer

Logs:
● Logs Explorer

Per component
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Unit testing
● Use weavertest package
● Run tests in single/multi process mode

func main() {
  ctx := context.Background()
  root := weaver.Init(ctx) // Initialize the app.
  cache, err := weaver.Get[Cache](root)
  …
  err = cache.Put(ctx, “mykey”, “myvalue”)
  …
}
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  …
}

# Run in a single process.
~/cache $ go run .   

(1)

E2E testing
● Use status commands
● Check logs, metrics, traces, dashboards
● Profiles

# Run in multiple processes.
~/cache $ weaver multi deploy weaver.toml

(2)

● Test whether the app still runs properly

● Test whether the app is making any 
assumptions that don’t hold in a 
distributed setting
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  ctx := context.Background()
  root := weaver.Init(ctx) // Initialize the app.
  cache, err := weaver.Get[Cache](root)
  …
  err = cache.Put(ctx, “mykey”, “myvalue”)
  …
}

● Test whether the app still runs properly

# Run in a single process.
~/cache $ go run .   

(1)

E2E testing
● Use status commands
● Check logs, metrics, traces, dashboards
● Profiles

● Test whether the app is making any 
assumptions that don’t hold in a 
distributed setting

# Run in multiple processes.
~/cache $ weaver multi deploy weaver.toml

(2)

● Test whether the app still works in the 
presence of multiple app versions running

# Emulate GKE runs.
~/cache $ weaver gke-local deploy weaver.toml

(3)
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Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the 

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing

Colocation
● Flexibility to colocate some 

components in the same OS process 

Routing
● Increased likelihood to route requests with the 

same key to the same component replica
● Increases cache hit ratio
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● OnlineBoutique Application
● 11 microservices
● E2-Medium VMs (1 core each), GKE, us-west1, 670 qps load
● Non-Weaver vs. Weaver (split) vs. Weaver (merged)
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Metric Non-Weaver Weaver (split) Weaver (merged) Gains

Go code 2647 lines 2117 lines 2117 lines up to 1.25x

Config code 1507 lines 9 lines 12 lines ∞

Autoscaled to 21 VMs 10 VMs 5 VMs up to 4x

Median latency 40 ms 12 ms 6 ms up to 7x

99p latency 520 ms 130 ms 14 ms up to 37x

https://cloud.google.com/service-mesh/docs/onlineboutique-install-kpt
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FAQ
Do’s

● Write a single modularized binary
● Decide on how to split into microservices only when you deploy
● Don't worry about the underlying network transports (e.g., HTTP, gRPC) and serialization (e.g., JSON, 

Protocol Buffers)
● Allows cross-component calls within the same process to be optimized down to local method calls

Don’ts
● Hide the network - the method calls should be treated as remote by default
● Organize the application code and low level interactions through an IDL
● Worry about code versioning issues and rollouts
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Easy to Deploy

Tiny Config
Deployed as microservices
Local, SSH, GKE deployers

        Easy to Develop

Split into Components  
Interact through method calls
Single binary
  

Easy to Monitor

Embedded telemetry
Integration with Monitoring 
Frameworks

High-Performance

Efficient encoding
Efficient transport
Component Colocation

Service Weaver

http://serviceweaver.dev 
Try it out!

Contribute!

Give Feedback!

A Framework for Writing Distributed Applications

func (c *cache) Put(_ context.Context, key, value string) error 
{
  c.Logger().Info(“Add”, “key”, key, “value”, value)
  c.data[key] = value
  return nil
}

func (c *cache) Put(_ context.Context, key, value string) error 
{
  c.data[key] = value
  putCount.Add(1.0)
  return nil
}

https://serviceweaver.dev

