
Introduction to Service Weaver
A Framework for Writing Distributed Applications

https://serviceweaver.dev

https://serviceweaver.dev

Trend
● Split the application into many microservices
● A team owns multiple microservices
● Add new microservices frequently
● Use an internal framework to manage them

2

Microservices

Distributed Programming Today
In Our Experience:

A piece of code that exports
an RPC service.

Distributed Programming Today
In Our Experience:

Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

A piece of code that exports
an RPC service.

Trend
● Split the application into many microservices
● A team owns multiple microservices
● Add new microservices frequently
● Use an internal framework to manage them

Why Split
● Scalability, fault tolerance
● Improved agility, maintainability:

○ Multiple languages? But a vast majority of the teams use only one language.
○ Different rollout schedules? But a significant fraction of the teams have only one rollout schedule.
○ Frequent rollouts? But only a tiny fraction of the microservices are released very often.

2

But splitting into microservices has drawbacks:
● Versioned upgrades
● Configuration complexity multiplied
● Added IDL and protocol complexity
● API hardening
● E2E and local testing

Distributed Programming Today
In Our Experience:

Why Split
● Scalability, fault tolerance
● Improved agility, maintainability:

○ Multiple languages? But a vast majority of the teams use only one language.
○ Different rollout schedules? But a significant fraction of the teams have only one rollout schedule.
○ Frequent rollouts? But only a tiny fraction of the microservices are released very often.

Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

Trend
● Split the application into many microservices
● A team owns multiple microservices
● Add new microservices frequently
● Use an internal framework to manage them

2

Distributed Programming Today

Service Weaver

Single binary
Single config

Monolith Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

3

Distributed Programming Today

Service Weaver

Single binary
Single config

Good:
Easier to address many challenges
due to using microservices.

Monolith Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

3

Distributed Programming Today

Service Weaver

Single binary
Single config

Bad:
Suffers from challenges that
microservices can handle.

Monolith Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

Good:
Easier to address many challenges
due to using microservices.

3

Distributed Programming Today

Bridges the gap between the two:
● Programming model of a

modular binary
● Flexibility of microservices

Service Weaver

Single binary
Single config

Monolith Service Weaver Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

Bad:
Suffers from challenges that
microservices can handle.

Good:
Easier to address many challenges
due to using microservices.

3

Distributed Programming Today

3

Bridges the gap between the two:
● Programming model of a

modular binary
● Flexibility of microservices

Service Weaver

Gist
● Program as a modular binary
● Deploy as a set of connected

microservices

Single binary
Single config

Monolith Service Weaver Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

Bad:
Suffers from challenges that
microservices can handle.

Good:
Easier to address many challenges
due to using microservices.

Distributed Programming Today

3

Bridges the gap between the two:
● Programming model of a

modular binary
● Flexibility of microservices

Service Weaver

Enables high-performance
applications

Gist
● Program as a modular binary
● Deploy as a set of connected

microservices

Single binary
Single config

Monolith Service Weaver

Enables portability (multi-cloud,
multi-language)

Microservices

Good:
● Improved scalability
● Improved fault tolerance
● Improved agility
● Improved maintainability

Bad:
● Harder to develop
● Harder to deploy
● Harder to maintain

A piece of code that exports
an RPC service.

Bad:
Suffers from challenges that
microservices can handle.

Good:
Easier to address many challenges
due to using microservices.

Service Weaver at a Glance

4

Development
● Using native language constructs
● Organized around native language

interfaces
● No code versioning concerns
● Embedded fields to weavify the app

Service Weaver at a Glance

4

Development
● Using native language constructs
● Organized around native language

interfaces
● No code versioning concerns
● Embedded fields to weavify the app

Deployment
● Single binary and a tiny config
● Run as a set of microservices at the

same code version
● Multiple deployers (local, GKE, SSH)
● Safe rollouts (blue/green deployments)

Service Weaver at a Glance

4

Development
● Using native language constructs
● Organized around native language

interfaces
● No code versioning concerns
● Embedded fields to weavify the app

Deployment
● Single binary and a tiny config
● Run as a set of microservices at the

same code version
● Multiple deployers (local, GKE, SSH)
● Safe rollouts (blue/green deployments)

Telemetry and Testing
● Integrated logging, metrics, and tracing
● Easy local testing
● Quick local iteration over application

changes via `go run`

Service Weaver at a Glance

4

Development
● Using native language constructs
● Organized around native language

interfaces
● No code versioning concerns
● Embedded fields to weavify the app

Deployment
● Single binary and a tiny config
● Run as a set of microservices at the

same code version
● Multiple deployers (local, GKE, SSH)
● Safe rollouts (blue/green deployments)

Telemetry and Testing
● Integrated logging, metrics, and tracing
● Easy local testing
● Quick local iteration over application

changes via `go run`

Performance
● Efficient serialization and transport
● Colocation
● Routing

Service Weaver at a Glance

4

Development

5

6

Application
A set of components that call each other.

Under the hood: a code generator to weavify
the application (e.g., generate encoding, stubs,
etc.)

type Rock interface { … }

type Paper interface { … }

type Scissors interface { … }

Write as a modular binary

// Components …

Application

type Rock interface { … }

type Paper interface { … }

type Scissors interface { … }

Run LocallyWrite as a modular binary

// Components …

Rock

Paper

Scissors

A set of components that call each other.

Under the hood: a code generator to weavify
the application (e.g., generate encoding, stubs,
etc.)

6

Application

Run Locally Run Distributed

type Rock interface { … }

type Paper interface { … }

type Scissors interface { … }

Write as a modular binary

// Components …

Rock

Paper

Scissors
Scissors

Rock

Paper

A set of components that call each other.

Under the hood: a code generator to weavify
the application (e.g., generate encoding, stubs,
etc.)

6

7

Application
How to define a component?
● Represented as a Go interface
● Args/results must be serializable

// Cache component definition.
type Cache interface {
 Put(ctx context.Context, key, value string) error
 ...
}

Application
How to define a component?
● Represented as a Go interface
● Args/results must be serializable

How to implement a component?
● As a Go struct
● The implementation should embed

weaver.Implements[T]

// Cache component definition.
type Cache interface {
 Put(ctx context.Context, key, value string) error
 ...
}

// Cache component implementation.
type cache struct {
 weaver.Implements[Cache] // to weavify the component
 data map[string]string
}

func (c *cache) Put(_ context.Context, key, value string) error {
 c.data[key] = value
 return nil
}

7

Application
How to define a component?
● Represented as a Go interface
● Args/results must be serializable

How to implement a component?
● As a Go struct
● The implementation should embed

weaver.Implements[T]

How to instantiate a component?
● weaver.Init(...) to initialize the

application
● weaver.Get[T]returns a handle to

the component

// Cache component definition.
type Cache interface {
 Put(ctx context.Context, key, value string) error
 ...
}

// Cache component implementation.
type cache struct {
 weaver.Implements[Cache] // to weavify the component
 data map[string]string
}

func (c *cache) Put(_ context.Context, key, value string) error {
 c.data[key] = value
 return nil
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
}

7

Application
How to define a component?
● Represented as a Go interface
● Args/results must be serializable

How to implement a component?
● As a Go struct
● The implementation should embed

weaver.Implements[T]

How to instantiate a component?
● weaver.Init(...) to initialize the

application
● weaver.Get[T]returns a handle to

the component

How to interact with a component?
● Simple method calls

// Cache component definition.
type Cache interface {
 Put(ctx context.Context, key, value string) error
 ...
}

// Cache component implementation.
type cache struct {
 weaver.Implements[Cache] // to weavify the component
 data map[string]string
}

func (c *cache) Put(_ context.Context, key, value string) error {
 c.data[key] = value
 return nil
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

7

Deployment

8

9

How to deploy?

Single Config
● Tiny

Release a single binary
[serviceweaver]
binary = "./game"
colocate = [// optional
 ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

// weaver.toml
// Game config file.

// Rock Paper Scissors app config.

How to deploy?

Single Config
● Tiny

Release a single binary // weaver.toml
// Game config file.[serviceweaver]

binary = "./game"
colocate = [// optional
 ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

// Rock Paper Scissors app config.

$ go run . # Run in a single process.

9

How to deploy?

Single Config
● Tiny

Release a single binary // weaver.toml
// Game config file.[serviceweaver]

binary = "./game"
colocate = [// optional
 ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

// Rock Paper Scissors app config.

$ go run . # Run in a single process.
$ weaver multi deploy weaver.toml # Run in multiple processes.

9

How to deploy?

Single Config
● Tiny
● Per deployment

Release a single binary // weaver.toml
// Game config file.

// Deployments config.

$ go run . # Run in a single process.
$ weaver multi deploy weaver.toml # Run in multiple processes.
$ weaver ssh deploy weaver.toml # Run in the cluster.

[ssh]
locations_file = "./ssh_locations.txt"

// Rock Paper Scissors app config.
[serviceweaver]
binary = "./game"
colocate = [// optional
 ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

Deployment commands for
● Local
● Multiple machines
● Cloud

9

How to deploy?

Single Config
● Tiny
● Per deployment

Deployment commands for
● Local
● Multiple machines
● Cloud

Release a single binary // weaver.toml
// Game config file.

// Deployments config.

$ go run . # Run in a single process.
$ weaver multi deploy weaver.toml # Run in multiple processes.
$ weaver ssh deploy weaver.toml # Run in the cluster.
$ weaver gke deploy weaver.toml # Run in the cloud.

[ssh]
locations_file = "./ssh_locations.txt"

// Rock Paper Scissors app config.

[gke]
regions = ["us-west1"]
public_listener = [
 {name = "game", hostname = "game.example.com"},
]

[serviceweaver]
binary = "./game"
colocate = [// optional
 ["Rock", "Paper"], ["Scissors"]
]
rollout = "1m" // optional

9

10

How is it deployed?

How is it deployed?
 component Rock
 component Paper

 component Scissors
Modular binary

10

How is it deployed?
 component Rock
 component Paper

 component Scissors

Rock

Paper Scissors

Modular binary

 Processes
(aka microservices)

10

How is it deployed?
 component Rock
 component Paper

 component Scissors

Rock

Paper
weaver libraries

Scissors
weaver libraries

Modular binary

 Processes
(aka microservices)

Runtime

Manages the
interaction between
the app and the
runtime

Local, SSH, GKE
deployers

10

Telemetry and Testing

11

Instrumentation

func (c *cache) Put(_ context.Context, key, value string) error {
 c.Logger().Info(“Add”, “key”, key, “value”, value)
 c.data[key] = value
 return nil
}

...

Logging
● Each component has an associated logger
● Structured logging: cat, tail, search, filter logs

$ weaver gke logs --follow # Follow all the logs.
$ weaver gke logs ‘app==“cache” && level==”info” # Only info logs.
$ …

12

Instrumentation

func (c *cache) Put(_ context.Context, key, value string) error {
 c.Logger().Info(“Add”, “key”, key, “value”, value)
 c.data[key] = value
 return nil
}

...

Logging
● Each component has an associated logger
● Structured logging: cat, tail, search, filter logs

$ weaver gke logs --follow # Follow all the logs.
$ weaver gke logs ‘app==“cache” && level==”info” # Only info logs.
$ …

Metrics
● Counters, gauges, and histograms
● Includes framework metrics
...

func (c *cache) Put(_ context.Context, key, value string) error {
 c.data[key] = value
 putCount.Add(1.0)
 return nil
}

var putCount = weaver.NewCounter(“put_count”, “Number of Put ops.”)

...

12

Instrumentation

func (c *cache) Put(_ context.Context, key, value string) error {
 c.Logger().Info(“Add”, “key”, key, “value”, value)
 c.data[key] = value
 return nil
}

...

Logging
● Each component has an associated logger
● Structured logging: cat, tail, search, filter logs

$ weaver gke logs --follow # Follow all the logs.
$ weaver gke logs ‘app==“cache” && level==”info” # Only info logs.
$ …

Metrics
● Counters, gauges, and histograms
● Includes framework metrics
...

func (c *cache) Put(_ context.Context, key, value string) error {
 c.data[key] = value
 putCount.Add(1.0)
 return nil
}

var putCount = weaver.NewCounter(“put_count”, “Number of Put ops.”)

...

Tracing
● Relies on OpenTelemetry
● Once enabled, all HTTP requests and component

method calls are automatically traced

func main() {
 …
 // Create an otel handler to enable tracing.
 otelHandler := otelhttp.NewHandler(http.DefaultServeMux, “http”)
 http.Serve(lis, otelHandler)
}

...

12

https://opentelemetry.io/

Instrumentation

func (c *cache) Put(_ context.Context, key, value string) error {
 c.Logger().Info(“Add”, “key”, key, “value”, value)
 c.data[key] = value
 return nil
}

...

Logging
● Each component has an associated logger
● Structured logging: cat, tail, search, filter logs

$ weaver gke logs --follow # Follow all the logs.
$ weaver gke logs ‘app==“cache” && level==”info” # Only info logs.
$ …

Metrics
● Counters, gauges, and histograms
● Includes framework metrics
...

func (c *cache) Put(_ context.Context, key, value string) error {
 c.data[key] = value
 putCount.Add(1.0)
 return nil
}

var putCount = weaver.NewCounter(“put_count”, “Number of Put ops.”)

...

Tracing
● Relies on OpenTelemetry
● Once enabled, all HTTP requests and component

method calls are automatically traced

func main() {
 …
 // Create an otel handler to enable tracing.
 otelHandler := otelhttp.NewHandler(http.DefaultServeMux, “http”)
 http.Serve(lis, otelHandler)
}

...

Profiling
● Profile each individual process and aggregates into a

single profile
● Captures the performance of the app as a whole
$ weaver gke profile cache # CPU profile.
$ weaver gke profile –-type=heap cache # Heap profile.
$ …

12

https://opentelemetry.io/

Monitoring
Dashboards

Bird’s eye view

Per component

13

Monitoring
Dashboards Integration with Monitoring Frameworks

Bird’s eye view

Per component

13

Monitoring
Dashboards Integration with Monitoring Frameworks

Bird’s eye view

Per component

13

Monitoring
Dashboards Integration with Monitoring Frameworks

Bird’s eye view

Tracing:
● Perfetto
● Google Cloud Trace

Metrics:
● Prometheus
● Metrics Explorer

Logs:
● Logs Explorer

Per component

13

https://perfetto.dev/
https://cloud.google.com/trace
https://prometheus.io/
https://cloud.google.com/monitoring/charts/metrics-explorer
https://cloud.google.com/logging/docs/view/logs-explorer-interface

14

Testing
Unit testing
● Use weavertest package
● Run tests in single/multi process mode

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

14

Testing
Unit testing
● Use weavertest package
● Run tests in single/multi process mode

// TestCache tests the Cache component.
func TestCache(t *testing.T) {
 ctx := context.Background()
 root := weavertest.Init(ctx, t, weavertest.Options{})
 cache, err := weaver.Get[Cache](root)
 err = cache.Put(ctx, “mykey”, “myvalue”)
 got , err := cache.Get(ctx, “mykey”)
 if want := “myvalue”; got != want {
 t.Fatal(“got %q, want %q”, got, want)
 }
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

Testing
Unit testing
● Use weavertest package
● Run tests in single/multi process mode

// TestCache tests the Cache component.
func TestCache(t *testing.T) {
 ctx := context.Background()
 root := weavertest.Init(ctx, t, weavertest.Options{})
 cache, err := weaver.Get[Cache](root)
 err = cache.Put(ctx, “mykey”, “myvalue”)
 got , err := cache.Get(ctx, “mykey”)
 if want := “myvalue”; got != want {
 t.Fatal(“got %q, want %q”, got, want)
 }
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

E2E testing
● Use status commands
● Check logs, metrics, traces, dashboards
● Profiles

14

Testing
Unit testing
● Use weavertest package
● Run tests in single/multi process mode

// TestCache tests the Cache component.
func TestCache(t *testing.T) {
 ctx := context.Background()
 root := weavertest.Init(ctx, t, weavertest.Options{})
 cache, err := weaver.Get[Cache](root)
 err = cache.Put(ctx, “mykey”, “myvalue”)
 got , err := cache.Get(ctx, “mykey”)
 if want := “myvalue”; got != want {
 t.Fatal(“got %q, want %q”, got, want)
 }
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

Run in a single process.
~/cache $ go run .

(1)

E2E testing
● Use status commands
● Check logs, metrics, traces, dashboards
● Profiles

● Test whether the app still runs properly

14

Testing
Unit testing
● Use weavertest package
● Run tests in single/multi process mode

// TestCache tests the Cache component.
func TestCache(t *testing.T) {
 ctx := context.Background()
 root := weavertest.Init(ctx, t, weavertest.Options{})
 cache, err := weaver.Get[Cache](root)
 err = cache.Put(ctx, “mykey”, “myvalue”)
 got , err := cache.Get(ctx, “mykey”)
 if want := “myvalue”; got != want {
 t.Fatal(“got %q, want %q”, got, want)
 }
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

Run in a single process.
~/cache $ go run .

(1)

E2E testing
● Use status commands
● Check logs, metrics, traces, dashboards
● Profiles

Run in multiple processes.
~/cache $ weaver multi deploy weaver.toml

(2)

● Test whether the app still runs properly

● Test whether the app is making any
assumptions that don’t hold in a
distributed setting

14

Testing
Unit testing
● Use weavertest package
● Run tests in single/multi process mode

// TestCache tests the Cache component.
func TestCache(t *testing.T) {
 ctx := context.Background()
 root := weavertest.Init(ctx, t, weavertest.Options{})
 cache, err := weaver.Get[Cache](root)
 err = cache.Put(ctx, “mykey”, “myvalue”)
 got , err := cache.Get(ctx, “mykey”)
 if want := “myvalue”; got != want {
 t.Fatal(“got %q, want %q”, got, want)
 }
}

func main() {
 ctx := context.Background()
 root := weaver.Init(ctx) // Initialize the app.
 cache, err := weaver.Get[Cache](root)
 …
 err = cache.Put(ctx, “mykey”, “myvalue”)
 …
}

● Test whether the app still runs properly

Run in a single process.
~/cache $ go run .

(1)

E2E testing
● Use status commands
● Check logs, metrics, traces, dashboards
● Profiles

● Test whether the app is making any
assumptions that don’t hold in a
distributed setting

Run in multiple processes.
~/cache $ weaver multi deploy weaver.toml

(2)

● Test whether the app still works in the
presence of multiple app versions running

Emulate GKE runs.
~/cache $ weaver gke-local deploy weaver.toml

(3)

14

Performance

15

Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing

Colocation
● Flexibility to colocate some

components in the same OS process

Routing
● Increased likelihood to route requests with the

same key to the same component replica
● Increases cache hit ratio

16

Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing.

Colocation
● Flexibility to colocate some

components in the same OS process

Benchmarking
● OnlineBoutique Application
● 11 microservices
● E2-Medium VMs (1 core each), GKE, us-west1, 670 qps load
● Non-Weaver vs. Weaver (split) vs. Weaver (merged)

Routing
● Increased likelihood to route requests with the

same key to the same component replica
● Increases cache hit ratio

16

https://cloud.google.com/service-mesh/docs/onlineboutique-install-kpt

Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing.

Colocation
● Flexibility to colocate some

components in the same OS process

Metric Non-Weaver Weaver (split) Weaver (merged) Gains

Go code 2647 lines 2117 lines 2117 lines up to 1.25x

Routing
● Increased likelihood to route requests with the

same key to the same component replica
● Increases cache hit ratio

Benchmarking
● OnlineBoutique Application
● 11 microservices
● E2-Medium VMs (1 core each), GKE, us-west1, 670 qps load
● Non-Weaver vs. Weaver (split) vs. Weaver (merged)

16

https://cloud.google.com/service-mesh/docs/onlineboutique-install-kpt

Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing.

Colocation
● Flexibility to colocate some

components in the same OS process

Metric Non-Weaver Weaver (split) Weaver (merged) Gains

Go code 2647 lines 2117 lines 2117 lines up to 1.25x

Config code 1507 lines 9 lines 12 lines ∞

Routing
● Increased likelihood to route requests with the

same key to the same component replica
● Increases cache hit ratio

Benchmarking
● OnlineBoutique Application
● 11 microservices
● E2-Medium VMs (1 core each), GKE, us-west1, 670 qps load
● Non-Weaver vs. Weaver (split) vs. Weaver (merged)

16

https://cloud.google.com/service-mesh/docs/onlineboutique-install-kpt

Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing.

Colocation
● Flexibility to colocate some

components in the same OS process

Routing
● Increased likelihood to route requests with the

same key to the same component replica
● Increases cache hit ratio

Benchmarking
● OnlineBoutique Application
● 11 microservices
● E2-Medium VMs (1 core each), GKE, us-west1, 670 qps load
● Non-Weaver vs. Weaver (split) vs. Weaver (merged)

16

Metric Non-Weaver Weaver (split) Weaver (merged) Gains

Go code 2647 lines 2117 lines 2117 lines up to 1.25x

Config code 1507 lines 9 lines 12 lines ∞

Autoscaled to 21 VMs 10 VMs 5 VMs up to 4x

https://cloud.google.com/service-mesh/docs/onlineboutique-install-kpt

Highly-Performant Runtime
Efficient encoding/decoding
● Argument/result types known at the

sender/receiver
● No versioning overheads

Efficient transport
● Built on top of TCP
● Custom load-balancing.

Colocation
● Flexibility to colocate some

components in the same OS process

Routing
● Increased likelihood to route requests with the

same key to the same component replica
● Increases cache hit ratio

Benchmarking
● OnlineBoutique Application
● 11 microservices
● E2-Medium VMs (1 core each), GKE, us-west1, 670 qps load
● Non-Weaver vs. Weaver (split) vs. Weaver (merged)

16

Metric Non-Weaver Weaver (split) Weaver (merged) Gains

Go code 2647 lines 2117 lines 2117 lines up to 1.25x

Config code 1507 lines 9 lines 12 lines ∞

Autoscaled to 21 VMs 10 VMs 5 VMs up to 4x

Median latency 40 ms 12 ms 6 ms up to 7x

99p latency 520 ms 130 ms 14 ms up to 37x

https://cloud.google.com/service-mesh/docs/onlineboutique-install-kpt

17

FAQ
Do’s

● Write a single modularized binary
● Decide on how to split into microservices only when you deploy
● Don't worry about the underlying network transports (e.g., HTTP, gRPC) and serialization (e.g., JSON,

Protocol Buffers)
● Allows cross-component calls within the same process to be optimized down to local method calls

Don’ts
● Hide the network - the method calls should be treated as remote by default
● Organize the application code and low level interactions through an IDL
● Worry about code versioning issues and rollouts

18

Easy to Deploy

Tiny Config
Deployed as microservices
Local, SSH, GKE deployers

 Easy to Develop

Split into Components
Interact through method calls
Single binary

Easy to Monitor

Embedded telemetry
Integration with Monitoring
Frameworks

High-Performance

Efficient encoding
Efficient transport
Component Colocation

Service Weaver

http://serviceweaver.dev
Try it out!

Contribute!

Give Feedback!

A Framework for Writing Distributed Applications

func (c *cache) Put(_ context.Context, key, value string) error
{
 c.Logger().Info(“Add”, “key”, key, “value”, value)
 c.data[key] = value
 return nil
}

func (c *cache) Put(_ context.Context, key, value string) error
{
 c.data[key] = value
 putCount.Add(1.0)
 return nil
}

https://serviceweaver.dev

