
OWASP Serverless
Top 10
As Code

Shlomi Kushchi, System Architect at Jit
March, 2023

Who am I?

Shlomi Kushchi,

System Architect at Jit

Engineer, 8200 veteran, Cloud Enthusiast

Public resources
IPs, buckets, …

3rd parties

User access

YOUR APP

CI/CD Pipeline

Protecting your perimeter

Admin User

MFA / Scope

MFA / Least
privilege

YOUR APP

Least privilege

Controls to protect your perimeter

Admin User

PentestingCloud misconfiguration

YOUR APP

Controls to protect your app

Disaster
recovery

Incident
Investigation

Access to
services

Traffic

Packaging
Secrets

Libraries

Example of Serverless Architecture (AWS)

Differences between classic and serverless

➔ Different Shared Responsibility Model

➔ Serverless Functions are ephemeral

➔ Increased attack surface

➔ More fine-grained control

Shared Responsibility Model (classic)

Shared Responsibility Model (serverless)

Security Plan Translation

Risk
Security

Requirements
Security

Tools Tests

Example: Injection Validate data input OWASP ZAP

What is the OWASP Foundation?

OWASP Serverless Top 10 risks
Security Domain Risk Description

A1:2017 Code Injection

A2:2017 Identity & Access Broken authentication

A3:2017 Data Sensitive data exposure

A4:2017 Code XML external entities (XXE)

A5:2017 Identity & Access Broken access control

A6:2017 Logging & Monitoring Security misconfiguration

A7:2017 Code Cross-site scripting (XSS)

A8:2017 Code Insecure deserialization

A9:2017 Code Using components with known vulnerabilities

A10:2017 Logging & Monitoring Insufficient logging & monitoring

Source: https://owasp.org/www-project-serverless-top-10/

OWASP Serverless Top 10: overview

Your Code

A1 A4

A7 A8 A9

Identity & Access

A2 A5

Log & Monitoring

A6 A10

Data

A3

A1:2017 - Injection
Your Code

Risk
Lack of input validation can lead to exploits like SQL injection

Security requirements
➔ Validate your data input
➔ Ensure your functions are running with least privilege
➔ Ensure you monitor your functions at runtime

Possible controls to remediate
➔ Check you are not vulnerable to traditional injection attacks
➔ Check your functions don’t have a wide privilege scope

A9:2017 - Using components with known
vulnerabilities
Your Code

Risk
Data leakage, account compromise, …

Security requirements
➔ Ensure you don't use dependencies with known vulnerabilities

Possible controls to remediate
➔ Vulnerable libraries scanner

A1:2017 - Broken Authentication
Identity & Access

Risk
Data leakage, break flow execution

Security requirements
➔ Make sure you don't have unauthorized endpoints
➔ Ensure you use some known IdP for identity management for user login
➔ Ensure your infra uses a central authentication method for inter-services
➔ Lambda and services should require authentication
➔ Verify that you don't have unmanaged public resources that do not require

auth

Possible controls to remediate
➔ Tool to check for runtime misconfiguration

A5:2017 - Broken Access Control
Identity & Access

Risk
Data leakage from cloud storage or database

Security requirements
➔ Ensure your functions are running with least privilege

Possible controls to remediate
➔ Check for least privilege IAM roles

A3:2017 - Sensitive data exposure
Your data

Risk
Data leakage

Security requirements
➔ Make sure your sensitive data is not accessible through public resources
➔ Ensure you use encryption at rest where you store your sensitive data
➔ Ensure you use encryption in transit for inbound traffic

Possible controls to remediate
➔ Check for hard-coded secrets
➔ Check that traffic is encrypted at rest/in transit

A6:2017 - Security Misconfiguration
Logging & Monitoring

Risk
Information leakage, DDos / Denial of Wallet

Security requirements
➔ Ensure your functions are configured properly, i.e. max. concurrency,avg. timeouts...

Possible controls to remediate
➔ Check that the functions are configured correctly

OWASP ZAP
Web Security tool

Features

- Will discover several types of vulnerabilities, i.e. SQL injections

- Works for URLs and API endpoints using Swagger/OpenAPI

- Will only work for API Gateway endpoints

Project: https://owasp.org/www-project-zap/

OWASP dependency-check
Vulnerable libraries detection

Features

- Detect publicly disclosed vulnerabilities contained within a project’s
dependencies

- Uses the NVD (National Vulnerability Database)

Project: https://owasp.org/www-project-dependency-check/

https://nvd.nist.gov/vuln/data-feeds

Gitleaks
Secret Detection

Features

- Detects multiple types of secrets: API keys, tokens, …

- Search in git history

- Easily integrated in CI/CD

Project: https://github.com/zricethezav/gitleaks

Prowler
Runtime infrastructure misconfiguration

Features

- ~200 checks

- Multiple output formats

- Support for AWS organization

Project: https://github.com/prowler-cloud/prowler

AirIAM (BridgeCrew)
Least Privilege IAM

Features

- Scans existing IAM usage patterns & detects unused IAM resources using
native AWS + Access Advisor

- Migrates IAM configuration in Terraform plan

Project: https://github.com/bridgecrewio/AirIAM

A1:2017 - Injection
Your Code

Risk
Lack of input validation can lead to exploits like SQL injection

Security requirements
➔ Validate your data input
➔ Ensure your functions are running with least privilege
➔ Ensure you monitor your functions at runtime

Possible OSS tools to remediate
➔ OWASP ZAP
➔ AirIAM (by Bridgecrew)

detect

prevent

A4:2017 - XML external entities (XXE)
Your Code

Risk
Exploit XXE attacks leveraging old XML processors

Security requirements
➔ Ensure you are protected against XXE attacks

Possible OSS tools to remediate
➔ OWASP ZAP
➔ OWASP dependency-checkdetect

detect

A7:2017 - Cross-site Scripting (XSS)
Your Code

Risk
Generate untrusted input from the backend using user data

Security requirements
➔ Ensure you are protected against XSS attacks

Possible OSS tools to remediate
➔ OWASP ZAPdetect

A8:2017 - Insecure Deserialization
Your Code

Risk
Exploit library

Security requirements
➔ Ensure you are protected against insecure deserialization

Possible OSS tools to remediate
➔ OWASP ZAP
➔ OWASP dependency-check

detect
detect

A9:2017 - Using components with known
vulnerabilities
Your Code

Risk
Data leakage, account compromise, …

Security requirements
➔ Ensure you don't use dependencies with known vulnerabilities

Possible OSS tools to remediate
➔ OWASP dependency-checkdetect

A1:2017 - Broken Authentication
Identity & Access

Risk
Data leakage, break flow execution

Security requirements
➔ Make sure you don't have unauthorized endpoints
➔ Ensure you use some known IdP for identity management for user login
➔ Ensure your infra uses a central authentication method for inter-services
➔ Lambda and services should require authentication
➔ Verify that you don't have unmanaged public resources that do not require

auth

Possible OSS tools to remediate
➔ OWASP ZAP
➔ Prowler

detect

detect

A5:2017 - Broken Access Control
Identity & Access

Risk
Data leakage from cloud storage or database

Security requirements
➔ Ensure your functions are running with least privilege

Possible OSS tools to remediate
➔ AirIAMprevent

A3:2017 - Sensitive data exposure
Your data

Risk
Data leakage

Security requirements
➔ Make sure your sensitive data is not accessible through public resources
➔ Ensure you use encryption at rest where you store your sensitive data
➔ Ensure you use encryption in transit for inbound traffic

Possible controls to remediate
➔ Gitleaks
➔ Prowler
➔ OWASP ZAP

detect

detect

detect

A6:2017 - Security Misconfiguration
Logging & Monitoring

Risk
Information leakage, DDos / Denial of Wallet

Security requirements
➔ Ensure your functions are configured properly, i.e. max. concurrency,avg. timeouts...

Possible OSS tools to remediate
➔ Prowler
➔ Custom tool

detect

detect

A10:2017 - Insufficient Logs and Monitoring
Logging & Monitoring

Risk
Letting attackers go unnoticed

Security requirements
➔ 1. Ensure you have enough logging for your infrastructure services to investigate

possible security issues
➔ 2. Ensure you have enough logging in your application to investigate possible security

issues and that you log admin events in your application (login, privilege grant, invite
user, config change, delete data)

Possible OSS tools to remediate
➔ Prowlerdetect

OWASP Serverless Top 10: OSS tools

Your Code Identity & Access

Log & MonitoringData

OWASP ZAP Prowler Prowler

OWASP ZAP

OWASP dep-check Gitleaks

OWASP ZAP AirIAM

Prowler

Taking it to the next level: Jit

Customized plan

Automating security plans using OSS security tools orchestration

Automating OWASP plans

Taking it to the next level: Jit
Plan codification

Your next step on the security journey

Thank you
Intrigued? Try our app at jit.io

Inspired? Join us! We are hiring!

Questions? Contact me at shlomi@jit.io

