
© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Sr. Compute Solutions Architect, AWS

Yael Grossman

Scaling Kubernetes clusters
without losing your mind or
money

© 2023, Amazon Web Services, Inc. or its affiliates.

Agenda

Why Karpenter?

How Karpenter works

Karpenter and Flexible Compute

What’s Next

© 2023, Amazon Web Services, Inc. or its affiliates.

Efficiency Requirements

Scale up or down dynamically to minimize wasteScale

Density Maximize the utilization of compute resources
within a scalable unit

Flexibility Trade availability for cost or adjust compute
resources to achieve higher utilization

© 2023, Amazon Web Services, Inc. or its affiliates.

M6g.xlarge
Instance family

Instance
generation

Instance size

Instance type

CPU

Memory

Storage

Network performance

GPU

Additional
capabilities

Containers
resource requirements

Amazon EC2
instance characteristics

© 2023, Amazon Web Services, Inc. or its affiliates.

So, how do we scale?

This To this

. . .

. . .

. . .

. . .

Amazon EC2
instance

© 2023, Amazon Web Services, Inc. or its affiliates.

Recap: Cluster Autoscaler scale-up

EKS worker node EKS worker node

Pending pod

Kubernetes
Cluster
Autoscaler

AWS Auto Scaling

1. Pod in pending state due to
insufficient resources

2. Increase desired number of
instances in one Auto Scaling group

3. Provision new node

4. Schedule pod

© 2023, Amazon Web Services, Inc. or its affiliates.

Cluster Autoscaling is Challenging to Configure

Nearly half of AWS Kubernetes
customers tell us that
configuring cluster autoscaling
is challenging.

• Multi-AZ availability

• Instance type flexibility

• Spot capacity

EKS Cluster

AZ 1

m5.4xl AZ1 OD ASG

m5.4xl AZ1 SPOT ASG

m5.4xl AZ1 OD ASG

c5.4xl AZ1 SPOT ASG

p3.8xl AZ1 OD ASG

p3.8xl AZ1 SPOT ASG

AZ 2

m5.4xl AZ2 OD ASG

m5.4xl AZ2 SPOT ASG

m5.4xl AZ2 OD ASG

c5.4xl AZ2 SPOT ASG

p3.8xl AZ2 OD ASG

p3.8xl AZ2 SPOT ASG

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Karpenter - Cost-efficient
compute for Kubernetes

© 2023, Amazon Web Services, Inc. or its affiliates.

Karpenter – Cost-efficient compute for Kubernetes

Karpenter lets you take full
advantage of AWS

with its deep integration
between Kubernetes and

Amazon EC2

Karpenter is an
intelligent and high-

performance Kubernetes
compute provisioning and

management solution

© 2023, Amazon Web Services, Inc. or its affiliates.

Karpenter
G R O U P L E S S P R O V I S I O N I N G A N D A U T O S C A L I N G

• Improve the efficiency and
cost of running workloads

• Simplification of
configuration

• Kubernetes native

• Flexible compute built-in

What if we remove
the concept of
node groups?

• Provision capacity directly with “instant” EC2 Fleets

• Choose instance types from pod resource requests

• Provision nodes using K8s scheduling constraints

• Track nodes using native Kubernetes labels

• Fully supported by AWS and ready for production

© 2023, Amazon Web Services, Inc. or its affiliates.

How Karpenter works

Consolidates instance orchestration
responsibilities within a single system

CA ASG
Cluster
Auto-
scaler

Auto
Scaling
GroupPod

Autoscaling
Pending

pods
EC2 Fleet
(instant)

© 2023, Amazon Web Services, Inc. or its affiliates.

Provisioner
CRD
• Provisioner – custom

resource to provision nodes
with a set of attributes
(taints, labels,
requirements, TTL)

• Single provisioner
can manage compute
for multiple teams
and workloads

• Can also have multiple
provisioners for isolating
compute for different needs

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Compute per workload
scheduling requirements

© 2023, Amazon Web Services, Inc. or its affiliates.

Compute per workload scheduling requirements

Pod scheduling constraints must fall
within a provisioner’s constraints

Standard K8s pod scheduling mechanisms

Workloads may be
required to run

In certain AZs
On certain types

of processors or hardware
(AWS Graviton, GPUs)

On Spot or
on-demand capacity

Node
selectors

Node
affinity

Taints and
tolerations

Topology
spread

© 2023, Amazon Web Services, Inc. or its affiliates.

Strategies for defining provisioners

Single

A single provisioner can
manage compute for
multiple workloads

Example use cases:
• Single provisioner for a

mix of Graviton and x86
• Single provisioner for

Spot and On-Demand

Multiple

Isolating compute for
different purposes

Example use cases:
• Expensive hardware
• Security isolation
• Team separation
• Different AMI

Prioritized
Define order across your
provisioners

Example use cases:
• Prioritize SPa and RI

ahead of other types
• Ratio split – Spot/OD,

x86/Graviton

© 2023, Amazon Web Services, Inc. or its affiliates.

Compute flexibility

Instance types,
Purchase options,
CPU architecture
• No list à picks from all instance types

in EC2 universe, excluding metal

• Attribute-based
requirements à sizes, families,
generations,
CPU architectures

Availability Zones
• Provision in any AZ

• Provision in specified AZs

© 2023, Amazon Web Services, Inc. or its affiliates.

Spot notification

Spot interruption handling with Karpenter

The work you are doing to
make your applications fault-
tolerant also enabled Spot

• 2-minute Spot Instance interruption notice via
instance metadata or Event Bridge event

• Flexibility is key to successful adoption.
Karpenter seamlessly supports flexibility
across different instance types, sizes and
Availability Zones

• Provisioners can be configured for a mix of
On-Demand and Spot. Spot is prioritized if
flexible to both capacity types.

• Use price-capacity-optimized allocation
strategy for Spot Instances

• Built-in Spot instance lifecycle management

© 2023, Amazon Web Services, Inc. or its affiliates.

CPU Architecture flexibility – Graviton based instances

Why run containers on Graviton with Karpenter?

• Amazon EKS and Amazon ECR are multi-architecture
friendly

• Managed EKS Addons are supported on Graviton nodes

• Labels are applied automatically to identify worker nodes
ARCH and OS

• Kubernetes.io/arch -> amd64, arm64

• Kubernetes.io/os -> Linux, Windows

• Provisioners can be configured for a mix of Graviton and x86

• Container runtimes automatically pull the correct image

© 2023, Amazon Web Services, Inc. or its affiliates.
19

Key Takeaways

• Karpenter is compatible with native k8s scheduling
• Karpenter offers compute flexibility and cost optimization

§ Schedule pods to EC2 Spot Instances to optimize cost

§ Mix x86 and Graviton instances for different workloads

• Use provisioners to ensure you are scaling using best practices
§ Default provisioner with diverse instance types and availability zones

§ Additional provisioners for specific compute constraints

§ Control scheduling of application pods with node selectors,
topologySpreadConstraints, taints and tolerations

© 2023, Amazon Web Services, Inc. or its affiliates.

Karpenter what’s next

Learn more at: github.com/aws/karpenter

© 2023, Amazon Web Services, Inc. or its affiliates.

Thank you!
Yael Grossman

yaelgr@amazon.com
linkedin.com/in/yael-grossman
aws-experience.com/emea/tel-aviv/meet-aws-expert?e=yael-grossman

