{31 Teleport

Terraform not Jira Tickets

Pass your compliance audits the DevOps way and actually improve your security too

{31 Teleport

Disclaimer

This advice applies to SOC2 Type |l
Certifications

PCI 27001 is about 90% similar

NIST and SOX are much stricter

Ticketing Systems are important for
Support Teams

Your laC Pipelines have powerful APl keys

that can be exfiltrated if not careful

Y 7 4 4

{31 Teleport

Hackers don’t care about your
change management process

{31 Teleport

Why did we even start doing tickets?

- Because we use Jira for planning

- Because IT/Systems work is considered a

Y 7 4 4
~

service organization

- ITIL Philosophies

Jra Github Issues for Planning and
Change Management

- Planning
- Assign to project boards (Kanban)
- Linked with Pull Requests
- Tagfor automation and audit Jira
- Assign to Milestones for releases

- Change Management
- PR’s = Change Tickets
- Testingis Automatic
- Code Reviews are better than approvals
- Auto Roll Back

- Full Audit Trail

Github

H DevOps is a service-organization

Platform Team

- Every Team included slows the process down

- Changes should be able to be made by 2

devs on the same team whenever

possible

- Only need approval from a second teams

for strictest compliance requirements

- Requests don’t scale

- Good DevOps requires shipping fast
- Requires 24x365 Support Desk

{31 Teleport ITI L

shutterstock.com + 1161033826

miL

- ITIL processes we created to manage error prone human driven processes
- Physical servers required coordination from multiple teams
- Manual Processes need manual approvals, manual testing, manual roll back plans

- The cloud means we can automate so stop following

{31 Teleport

Stop following IT Philosophies from
the Pre-Cloud Era

Applying laC to Manage Saa$S Apps for
Compliance

|aC systems like Terraform work great
for passing compliance audits for
infrastructure but they can also be used
for managing configuration of critical
Saa$S apps like Github and Okta which
traditionally still needed tickets for

manual changes by IT admins

10

{31 Teleport

If you use github to manage your
infrastructure then a compromised
github admin owns your
infrastructure

{31 Teleport

YO DAWG; | HEARD YOU LIKE
MANAGING SYSTEMS WITH GITHUB

¢

-

-

o

|
SO 1 TERRAFORMED YOUR GITHUB
SO YOU CAN MANAGE GITHUB ON GITHUB

ey
2

imgflip:eom

Applying laC to Manage Saa$S Apps for
Compliance

- All Changes Must Come from laC
. - Remove Console Access from the the
\ entire stack including:
3 @ - Okta
! \ =, 7 - Github

@ Ll - Terraform Cloud

Terraforming Okta

Applying ABAC directory rules via Terraform to eliminate Jira
tickets for access requests in just 3 easy steps..

42 Teleport Step 1: Create a group for every app and role

¥ group-apps.tf @

Users > travisgary > “¥* group-apps.tf
locals {
apps = {
"Salesforce" = { rule = join(" ", [
"user.department == \"Sales\" OR",

@ "user.department == \"Marketing\""
Teleport ’)
OKCQ ARt

aWS "Salesforce-Admin" = { rule = join(" ", [
A 9 "User.login == \"travis@goteleport.com\" OR",
/' ‘\ Ve A N 10 "User.login == \"henning@goteleport.com\""

1

3 app-Group

Create Usermm{) app user

resource "okta_group" "app" {
for_each = local.apps
name = "app-${each.key}"
description = "Do Not Edit, RBAC"
] “ar 1

g app-role Assign Role=={") app-role

\ J N J resource "okta_group_rule" "app" {
Y
Y for_each = local.apps
name = "rbac-app-${each.key}"
status = "ACTIVE"
group_assignments [okta_group.appl[each.key].id]
expression_type "urn:okta:expression:1.0"
expression_value each.value.rule

Step 1: Create a group for every app and role

- Create groups for groups and roles that are not yet managed by
code

- Changes to those groups can be used as the
request/approval/audit system

- Future Proof for when those apps do support Provisioning/RBAC

Step 2: Remove Group Admin Access

- Create aroles for IT users such as IT-Helpdesk-Admin
- Restrict ‘Group-Admin’ permissions to only allow managing
groups not managed by Terraform

- All groups that affect access should be in terraform

Step 3: Alert on Changes outside Terraform

- Connect Okta to your SIEM (Security Information Events
Monitoring) Platform
- Use Webhooks and Zapier if you don’t have a SEIM
- Write an alert to fire anytime a group change is made by

anyone other than the terraform service user
splunk>

W panther

Step n: Repeat until 100% Terraform Coverage

- Continue to Terraform more resources that admins usually
configure via console until all are codified
- Remove console access entirely
- Create a breakglass user for console access
- Alertin 1password if user credentials accessed
- Alert on Okta changes made outside terraform

- Stop needing change management tickets

{31 Teleport

Tickets are only for changes made
outside of code.

No changes outside code, no tickets.

