Let’s make a Pact
Don’t break my API!

I’'m Frank Kilcommins

» APl Technical Evangelist at SmartBear
» Developer and Architect passionate about APls & Developer Experience

/* 1Insert embarrassing photo here */

y Connect:

afkilcommins

afrank-kilcommins

Talk Track

» APl Landscape Trends

» Designing for the future

» |Is extensibility enough?

» Bi-Directional Contract Testing — An approach to calming the chaos
» Demo

» Takeaways

/* what do we want: SPRAWL! When do we want i1t: ? */

APl Landscape Trends

» Microservices driving APl growth

SmartBear - State of Software Quality | API 2021 Postman - State of APl Report 2022

/* what do we want: SPRAWL! When do we want i1t: ? */

APl Landscape Trends

» Microservices driving APl growth
» Microservices are more than a fad

Postman - State of APl Report 2022

/* what do we want: SPRAWL! When do we want i1t: ? */

APl Landscape Trends

» Microservices driving API growth
» Microservices are more than a fad
» Managing the sprawl will get harder

“By 2025, less than 50% of enterprise APIs
will be managed, as explosive growth in
APIls surpasses the capabilities of API
management tools.”

Designing for Extensibility.....helps!

» A successful APl is long living and can evolve gracefully
» Bake extensibility into your design practices

Designing for Extensibility.....helps!

» A successful APl is long living and can evolve gracefully
» Bake extensibility into your design practices

— Do

Treat your microservices as APIs (and APIs as Products)

Define your extension points
Communicate robust extensibility pattern

)
)
>
» Apply semantic versioning
» Test for extensibility

>

Communicate

Designing for Extensibility.....helps!

» A successful APl is long living and can evolve gracefully

» Bake extensibility into your design practices

— Do

» Treat your microservices as APIs (and APIs as Products) Don’t add required inputs

» Define your extension points Don’t remove outputs or make them optional

» Communicate robust extensibility pattern Don’t change the type of a property

» Apply semantic versioning Don’t change property meaning by adding new property
» Test for extensibility Use Booleans sparingly

» Communicate Be inconsistent in your process

Failure warning: extensibility alone is not enough

Pitfalls remain ®

» Major version proliferation

Pitfalls remain ®

VA

» Major version proliferation

» Unbalanced testing approach I

API Gateway

—— e e e = e e e = e T T Yy Sy ——

Pitfalls remain ®

» Major version proliferation

» Unbalanced testing approach N
g. /// \\\ E
S / E2E Tests '\ 5
~J ,/ \\ EE
X /) A W

Minutes Q 2 \ Medium
N , \\ oY
§ / Integration Tests e
it . \ W

Seconds / U N1 t T e S t \\ Low

Speed ./ __ _ _ _ o ________x Confidence

The test pyramid

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

CI Staging Production
(Tt (Tt e T (T ot
Consumer — = = - — > Consumer - - = — > Consumer

g v3 '\ v2 g A
(CTTTTTTITTT IToTTTTTT (CTTTTTTITTTTooTTTTT s (CTTTTTTITTTTooTIT oo
Provider — —— = — — . Provider e — - - — o Provider

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

CI Staging Production
(Tt (Tt e T (T ot
Consumer — = = - — > Consumer - - = — > Consumer

g v3 '\ v2 g A
Test Test Test
___________ Y _ . Y __. Y __.
{'- - {'- - {'- -
Provider — —— = — — . Provider e — - - — o Provider

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

Production

Test

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

CI Staging Production

Test

“If you can’t deploy services
independently, you don’t have
microservices”

— Beth Skurrie

“If you can’t deploy services
independently, you don’t have
microservices”

— Beth Skurrie

/* Insert viable solution */

Bi-Directional Contract Testing

Making a pact to evolve safely

/* A new approach to contract testing */

Bi-Directional Contract Testing (BDCT)

» Schema based rather than specification by example
» Supports design-first provider workflow
» Well suited to retrofit onto existing systems

» BYO tools, tests and artifacts:
> OpenAPIl documents
» Capture contracts (e.g, Cypress, Wiremock, Mountebank)
» Contract verification (e.g., Dredd, Restassured, ReadyAPI, Postman)

» More inclusive support for wider demographic of contract testers
(e.g., Designers, QAs, SDETs, Devs)

/* Additional Context */

What’s a Pact

» Pact (noun): A formal agreement between
individuals or parties

» Creates a contract between consumer and provider,
which is independently verifiable

» Captures interaction expectations between
software components (both explicit and implicit)

Pact between
Microservice 1 vl
& Microservice 2 vl

il
I

[

Microservice

[Microservice
3

—

l g

:] E:$> [:Microservice
1 1 2
pe=RY

_———— -

[Microservice
X

/* Additional Context */

What’s a Pact

» Pact (noun): A formal agreement between
individuals or parties

» Creates a contract between consumer and provider,
which is independently verifiable

» Captures interaction expectations between
software components (both explicit and implicit)

» Keep assumptions in sync

» Ability to verify consumer-provider pairs in an
asynchronous fashion

Pact.json file example

{

}

'consumer": { "name": “microservicel-consumer-wiremock' 7},
“provider": { "name": “microservice2-provider-restassured" },
"interactions': [

1

}

{

"description': "GET_/products_ f25f7b8e-35F2",
"request': {

"method": "GET",

"path': "/products',

query': ""name=pizza&type=food",

"headers': { "Content-Type': "application/json” }
3.
"response': {

“'status: 200,

"headers': { "Content-Type': "application/json" },

“"body': { "id': 27", "name': 'pizza", "type": "food" }
}

}
"metadata': {
"pactSpecification": { "version": "2.0.0" },
“"client": {
"name'': "optional name of the adapter',
"version': "semver compatible version of the adapter™
}

/* walk through */

BDCT — How is works

Provider Provider tests
Testing Tool behaviour &

(BYO) verifies contract
4

Provider

|
I
|
|
|
| API
|
|
|
I
|
|

Produces
"Provider Contract"

/* walk through */

BDCT — How is works

Provider Provider tests
Testing Tool behaviour &

(BYO) verifies contract
4

Provider

|
I
|
|
|
| API
|
|
|
I
|
|

O

Publish Contracts

Produces
"Provider Contract"

/* walk through */

BDCT — How is works

Consumer tests
behaviour
against mock

API

Consumer

Produces
''consumer contract"

Mock
(BYO)

)

Publish Contracts

Provider

Testing Tool
(BYO)

&

Provider tests
behaviour &

verifies contract

API

Provider

Produces
"Provider Contract"

/* walk through */

BDCT — How is works

Mock Provider Provider tests
(BYO) Testing Tool behaviour &

Consumeﬁ tests (BYO0) verifies contract
behaviour N
against mock

API

Consumer Provider

|
I
|
|
|
I API
|
|
|
I
|
|

|
|
|
|
|
|
/O
— Publish Contracts
Produces —— Produces
“consumer contract" ¥ — "Provider Contract"

/* walk through */

BDCT — How is works

Mock Provider Provider tests
(BYO) Testing Tool behaviour &
Consumer tests (BYO0) verifies contract
behaviour
against mock I @ :
:]
! l
: |
e : Broker checks that the |
i API : consumer Pact contract is | ; AP_Id
onsumer . . | rovider
| compatible with the OAS |
' from provider l
:]
! l
| “"Contract Comparison" I
: T
Produces —— o-1a -depLoy ; _PrOduces y
"consumer contract" x_ Provider Contract

/* walk through */

BDCT — How is works

Mock

(BYO)
Consumer tests

behaviour
against mock

O

API

Consumer

€ e e e em e e = e e = -

Provider Provider tests
Testing Tool behaviour &
(BYO0) verifies contract

4
|
|
|
|
Broker checks that the I

consumer Pact contract is | : AP_Id

. . | roviaer

compatible with the OAS |
from provider |
|
_ |
"Contract Comparison" I

/!

Produces
"consumer contract"

X

]

- can-1-deploy

Produces
"Provider Contract"

&)

@

DEMO ...ish

> Provider API
> Products APl written in CH#
» Using Schemathesis to test the API

) Consumer JSON/HTTP
» Product API Consumer Client (C#/.NET core) (7
» Consumer testing using Wiremock as mocking tool

P e e e e e e e e

» GitHub Actions for ClI

@ 5wagger Editor File v Editv |Insetv GenerateServer v Generate Client v About v Try our new Editor ~

Products AP| €

A sample Products API to demonstrate Bi-Directional Contract Testing for ASC 2022

Products API

ol

(0]

tract Testing for

=]

-]

trieve a list of products

P
Get a list of products Products
- Products .
GET /Products Retrieve a list of products N2
GET /Products/{id} Retrieve details on a specific product v
] :" (.
;'1 ‘ m /Products/{int} Delete a product from the catalog v
22 . J
23
24
25
26 Schemas LN
27
23
20 o
; Product >

trieve details on a specific product
: Get the full details on a particular product from the catalog

[= Y I R VN g . - Y

8 o~

[V I Y, RV RV, RV W Ry R

e

noan
=

Provider — Test using Schemathesis

PS C:\WUsersifrank.kilcomminsiGitHub\forks\example-bi-directional-provider-dotnet> make verify swagger
sh ./example-bi-directional-provider-dotnet/scripts/verify swagger.sh

Started dotnet API with process ID: 829

Running schemathesis test to generate report

Stopping dotnet API

PS C:\WUsersifrank.kilcomminsiGitHub\forks\example-bi-directional-provider-dotnet» D

==== === === = SUMMARY === === s===============
Pertformed checks:
not_a_server_error 181 / 181 passed PASSED
status_code conformance 181 / 181 passed PASSED
content_type conformance 181 / 161 passed PASSED
response_headers conformance 181 / 161 passed PASSED

response_schema_conformance 181 / 181 passed PASSED

Provider — Cl using GitHub Actions

Pactflow — Provider contract published to broker

??? - pactflow-example-bi-directional-provider-dotnet

Unknown

[Fact]
0 references | Run Test | Debug Test

‘ O n S l l I I I e r — I e St public async Task GetProduct_WhenCalledWithInvalidID ReturnsError()

// Arrange
var server = WireMockServer.Start();

° (]
u S I n X u n It a n d String serverUrl = server.Urls[@] + “/";
server

-WithConsumer{consumer})
e -WithProvider(provider)
W I re m O C k -Given{Request.Create().UsingGet().WithPath("/Products/18"))
MWithTitle("a request to retrieve a product id that does not exist™)
.RespondWith(Response
.Create()
.WithStatusCode(HttpStatusCode.NotFound)

.WithHeader("Content-Type",
"application/json; charset=utf-8"));

/{ Act
var client = new ProductClient();
var ex =
await Assert
.ThrowsAsync<HttpRequestException»(() =>
client.GetProduct(serverUrl, 18, null));

/[Assert

Assert
-.Equal("Response status code does not indicate success: 484 (Not Found).",
ex.Message);

server
.SaveStaticMappings(Path

-Combine("..", "..", "..", "wiremock-mappings")};

// Save pact

server
.SavePact(Path.Combine("..", "..", "..", "pacts"),
"get-product-by-id-not-exist.json");

Consumer — Test generates pact.json file

{

"consumer”: {
"name”: "pactflow-example-bi-directional-consumer-wiremock-dotnet™
s

"interactions”: |
r

1
"providerState”: "a reguest to retrieve a product id that does not exist",
"request”: {
"method”: "GET",
"path™: "/Products/18"
| '
"response”: {
"headers™: {
"Content-Type”: "application/json; charset=utf-8"
}s
"status”: 484

|}
15
"provider™: {

"name”: "pactflow-example-bi-directional-provider-dotnet™
h
H

Consumer — Another Cl using GitHub Actions

Try our new Editor ~

Products AP 2

A sample Products API to demonstrate Bi-Directional Contract Testin,
P ntiall Kin han
Ote tla y Brea I g C a ge Products
Products Retrieve a list of product;
ific produc

Product Owner:
“Please remove DPELETE method,

it’s for adwmiv APT only”

Potentially Breaking Change

A Breaking Change

Product Owner:

“The Metrics are killing us -
reduce the errors ASAP”

A Breaking Change

A

24

25
26

Can | deploy? 6s

docker run --rm -v //home/runner/work/example-bi-directional-provider-dotnet/example-bi-directional-provider-dotnet://home/runner/work/example-bi-
directional-provider-dotnet/example-bi-directional-provider-dotnet -w /home/runner/work/example-bi-directional-provider-dotnet/example-bi-directional-
provider-dotnet -e PACT_BROKER_BASE_URL -e PACT_BROKER_TOKEN pactfoundation/pact-cli:latest pact-broker can-i-deploy --pacticipant "pactflow-example-bi-
directional-provider-dotnet™ --version 64247a-main+64247a --to-environment production

Computer says no ~_ (%) /~

CONSUMER | C.VERSION | PROVIDER | P.VERSION | suCcess? |
RESULT#

R e [e e e —
pactflow-example-bi-directional-consumer-wiremock-dotnet | 5677d88... | pactflow-example-bi-directional-provider-dotnet | 64247a-main+64247a | false | 1

VERIFICATION RESULTS

1. https://smartbear-frank.pactflow.io/contracts/bi-directional/provider/pactflow-example-bi-directional-provider-dotnet/version/64247a-
mainf2B64247a/consumer/pactflow-example-bi-directional -consumer-wiremock-dotnet/version/5677d888a56a136df9ba@e8fddff1c5d498f8f7f/cross-contract-

verification-results (failure)

The cross contract verification between the pact for the version of pactflow-example-bi-directional-consumer-wiremock-dotnet currently deployed or released
to production (5677d8B80a56all6df9babe8fddfflc5d498f3f7f) and the ocas for version 64247a-main+64247a of pactflow-example-bi-directional-provider-dotnet
failed

make: *** [Makefile:95: can_i deploy] Error 1

Error: Process completed with exit code 2.

The Matrix — information to safely promote

/* Problem addressed: unbalanced testing strategy */

Rebalance the approach to microservices testing

» Reduced E2E tests

» Reduce integration tests TN
. Hours /// Tests \ e S
» Reduce assumptions . Imtearations 2
-) o / Tests N '~
» Increase delivery confidence S AR S >
: X) \ N
» Deploy independently e § / Contract Tests S B
: T S ' l\ t
» Scale predictably o N S
Unit Tests AN Wy

\ Low

\ -~
\ Confidence

The test pyramid

v/| Cheap /| Fast VA LEUE]]E V| Targeted

/* Problem addressed: lack of visibility into how consumers are using an APl */

Benefits for Design-First

» Visibility into consumers

» Reduce the need for APl major versioning

» Prevent breaking changes — reducing assumptions (drift)
» Know when it’s safe to deploy new changes

» Better conversations

» Design-first with confidence

Thank You!

y Connect:

afkilcommins
afrank-kilcommins

frank.kilcomminsa@asmartbear.com

Give it a try

Head to go.pactflow.io/design-first

N

Resources contributing to this talk:
» https://smartbear.com/state-of-software-quality/api/

» https://www.postman.com/state-of-api/

» https://docs.pactflow.10/docs/workshops

» https://www.youtube.com/watch?v=a-JoVnpZzNg - (Erik Wilde - Designing APIs for Extensibility)

» https://www.sealights.10/webinars/achieving-quality-at-speed-i1n-a-modern-
software-world-microservices-delivery-without-the-pitfalls/ - (seb Rose)

https://go.pactflow.io/design-first
https://smartbear.com/state-of-software-quality/api/
https://www.postman.com/state-of-api/
https://docs.pactflow.io/docs/workshops
https://www.youtube.com/watch?v=a-JoVnpZzNg

	Default Section
	Slide 1: Let’s make a Pact
	Slide 2: I’m Frank Kilcommins
	Slide 3: Talk Track
	Slide 4: API Landscape Trends
	Slide 5: API Landscape Trends
	Slide 6: API Landscape Trends
	Slide 7: Designing for Extensibility…..helps!
	Slide 8: Designing for Extensibility…..helps!
	Slide 9: Designing for Extensibility…..helps!
	Slide 10
	Slide 11: Pitfalls remain 
	Slide 12: Pitfalls remain 
	Slide 13: Pitfalls remain 
	Slide 14: Pitfalls remain 
	Slide 15: Pitfalls remain 
	Slide 16: Pitfalls remain 
	Slide 17: Pitfalls remain 
	Slide 18: “If you can’t deploy services independently, you don’t have microservices” – Beth Skurrie
	Slide 19: “If you can’t deploy services independently, you don’t have microservices” – Beth Skurrie
	Slide 20: Bi-Directional Contract Testing
	Slide 21: Bi-Directional Contract Testing (BDCT)
	Slide 22: What’s a Pact
	Slide 23: What’s a Pact
	Slide 25: BDCT – How is works
	Slide 26: BDCT – How is works
	Slide 27: BDCT – How is works
	Slide 28: BDCT – How is works
	Slide 29: BDCT – How is works
	Slide 30: BDCT – How is works
	Slide 31: DEMO …ish
	Slide 32
	Slide 33: Provider – Test using Schemathesis
	Slide 34: Provider – CI using GitHub Actions
	Slide 35: Pactflow – Provider contract published to broker
	Slide 36: Consumer – Test using xunit and wiremock
	Slide 37: Consumer – Test generates pact.json file
	Slide 38: Consumer – Another CI using GitHub Actions
	Slide 39: Consumer - Pactflow
	Slide 40: Potentially Breaking Change
	Slide 41: Potentially Breaking Change
	Slide 42: A Breaking Change
	Slide 43: A Breaking Change
	Slide 44
	Slide 45: The Matrix – information to safely promote
	Slide 46: Rebalance the approach to microservices testing
	Slide 47: Benefits for Design-First
	Slide 49: Thank You!
	Slide 50: Give it a try

