
Let’s make a Pact
Don’t break my API!

I’m Frank Kilcommins

› API Technical Evangelist at SmartBear

› Developer and Architect passionate about APIs & Developer Experience

› Connect:

/* insert embarrassing photo here */

@frank-kilcommins

@fkilcommins

Talk Track

› API Landscape Trends

› Designing for the future

› Is extensibility enough?

› Bi-Directional Contract Testing – An approach to calming the chaos

› Demo

› Takeaways

API Landscape Trends

› Microservices driving API growth

/* what do we want: SPRAWL! When do we want it: ? */

SmartBear – State of Software Quality | API 2021 Postman – State of API Report 2022

API Landscape Trends

› Microservices driving API growth

› Microservices are more than a fad

/* what do we want: SPRAWL! When do we want it: ? */

Postman – State of API Report 2022

API Landscape Trends

› Microservices driving API growth

› Microservices are more than a fad

› Managing the sprawl will get harder

/* what do we want: SPRAWL! When do we want it: ? */

How long has your organization been providing/developing APIs?

“By 2025, less than 50% of enterprise APIs

will be managed, as explosive growth in

APIs surpasses the capabilities of API

management tools.”

Designing for Extensibility…..helps!

› A successful API is long living and can evolve gracefully

› Bake extensibility into your design practices

Designing for Extensibility…..helps!

› A successful API is long living and can evolve gracefully

› Bake extensibility into your design practices

› Treat your microservices as APIs (and APIs as Products)

› Define your extension points

› Communicate robust extensibility pattern

› Apply semantic versioning

› Test for extensibility

› Communicate

Do

Designing for Extensibility…..helps!

› A successful API is long living and can evolve gracefully

› Bake extensibility into your design practices

› Treat your microservices as APIs (and APIs as Products)

› Define your extension points

› Communicate robust extensibility pattern

› Apply semantic versioning

› Test for extensibility

› Communicate

Do
› Don’t add required inputs

› Don’t remove outputs or make them optional

› Don’t change the type of a property

› Don’t change property meaning by adding new property

› Use Booleans sparingly

› Be inconsistent in your process

Don’t

Failure warning: extensibility alone is not enough

Pitfalls remain

› Major version proliferation

Pitfalls remain

› Major version proliferation

› Unbalanced testing approach

API Gateway

Microservice 1 Microservice 2

Microservice X

Microservice 3

Message Queue

Consumer

JSON/HTTP

JSON/HTTP JSON/HTTP JSON/HTTP

JSON/HTTP
JSON/HTTP JSON/HTTP

End-to-End Test

$

Pitfalls remain

› Major version proliferation

› Unbalanced testing approach

Unit Test

Integration Tests

E2E Tests

The test pyramid

F
e
e
d
b
a
c
k

L
o
o
p
s

Hours

Minutes

Seconds

Confidence

E
f
f
o
r
t

&

F
r
a
g
i
l
i
t
yHigh

Medium

Low

Speed

X Expensive X Slow X Unreliable X Not targeted

$
$

Pitfalls remain

› Major version proliferation

› Unbalanced testing approach

› Environment management (dependencies)

Consumer
v3

Consumer
v2

Consumer
v1

Provider
v3

Provider
v2

Provider
v1

CI Staging Production

/* ToDo: address the complexity */

$
$

Pitfalls remain

› Major version proliferation

› Unbalanced testing approach

› Environment management (dependencies)

Consumer
v3

Consumer
v2

Consumer
v1

Provider
v3

Provider
v2

Provider
v1

CI Staging Production

Test Test Test

/* ToDo: address the complexity */

Pitfalls remain

› Major version proliferation

› Unbalanced testing approach

› Environment management (dependencies)

Consumer
v3

Consumer
v2

Consumer
v1

Provider
v3

Provider
v2

Provider
v1

CI Staging Production

Test Test Test

Test Test

/* ToDo: address the complexity */

Pitfalls remain

› Major version proliferation

› Unbalanced testing approach

› Environment management (dependencies)

Consumer
v3

Consumer
v2

Consumer
v1

Provider
v3

Provider
v2

Provider
v1

CI Staging Production

Test Test Test

Test TestTest Test

/* ToDo: address the complexity */

$
$
$

“If you can’t deploy services
independently, you don’t have

microservices”
– Beth Skurrie

“If you can’t deploy services
independently, you don’t have

microservices”
– Beth Skurrie

You have a distributed monolith

Bi-Directional Contract Testing

Making a pact to evolve safely

/* Insert viable solution */

Bi-Directional Contract Testing (BDCT)

› Schema based rather than specification by example

› Supports design-first provider workflow

› Well suited to retrofit onto existing systems

› BYO tools, tests and artifacts:
› OpenAPI documents

› Capture contracts (e.g, Cypress, Wiremock, Mountebank)

› Contract verification (e.g., Dredd, Restassured, ReadyAPI, Postman)

› More inclusive support for wider demographic of contract testers
(e.g., Designers, QAs, SDETs, Devs)

/* A new approach to contract testing */

What’s a Pact

› Pact (noun): A formal agreement between
individuals or parties

› Creates a contract between consumer and provider,
which is independently verifiable

› Captures interaction expectations between
software components (both explicit and implicit)

/* Additional Context */

Microservice

1

Microservice

2

Microservice

X

Microservice

3

Pact between

Microservice 1 v1

& Microservice 2 v1

What’s a Pact

› Pact (noun): A formal agreement between
individuals or parties

› Creates a contract between consumer and provider,
which is independently verifiable

› Captures interaction expectations between
software components (both explicit and implicit)

› Keep assumptions in sync

› Ability to verify consumer-provider pairs in an
asynchronous fashion

/* Additional Context */

{

"consumer": { "name": “microservice1-consumer-wiremock" },

"provider": { "name": “microservice2-provider-restassured" },

"interactions": [

{

"description": "GET_/products_f25f7b8e-35f2",

"request": {

"method": "GET",

"path": "/products",

"query": "name=pizza&type=food",

"headers": { "Content-Type": "application/json" }

},

"response": {

"status": 200,

"headers": { "Content-Type": "application/json" },

"body": { "id": "27", "name": "pizza", "type": "food" }

}

}

],

"metadata": {

"pactSpecification": { "version": "2.0.0" },

"client": {

"name": "optional name of the adapter",

"version": "semver compatible version of the adapter"

}

}

}

Pact.json file example

BDCT – How is works

Provider

Testing Tool
(BYO)

API

Provider

2

Produces

”Provider Contract”
1

Provider tests

behaviour &

verifies contract

/* walk through */

BDCT – How is works

Provider

Testing Tool
(BYO)

API

Provider

2

Produces

”Provider Contract”
1

Publish Contracts

3

Provider tests

behaviour &

verifies contract

/* walk through */

Broker

BDCT – How is works

API

Consumer

Consumer tests

behaviour

against mock
4

Mock
(BYO)

Produces

“consumer contract”
5

Provider

Testing Tool
(BYO)

API

Provider

2

Produces

”Provider Contract”
1

Provider tests

behaviour &

verifies contract

/* walk through */

Publish Contracts

3

Broker

BDCT – How is works

API

Consumer

Consumer tests

behaviour

against mock
4

Mock
(BYO)

Produces

“consumer contract”
5

Provider

Testing Tool
(BYO)

API

Provider

2

Produces

”Provider Contract”
1

Provider tests

behaviour &

verifies contract

/* walk through */

Publish Contracts

3

Broker

BDCT – How is works

API

Consumer

Consumer tests

behaviour

against mock
4

Mock
(BYO)

Produces

“consumer contract”
5

Provider

Testing Tool
(BYO)

API

Provider

2

1

“Contract Comparison”

6

Broker checks that the
consumer Pact contract is
compatible with the OAS

from provider

Provider tests

behaviour &

verifies contract

Produces

”Provider Contract”
can-i-deploy

/* walk through */

BDCT – How is works

API

Consumer

Consumer tests

behaviour

against mock
4

Mock
(BYO)

Produces

“consumer contract”
5

Provider

Testing Tool
(BYO)

API

Provider

2

1

“Contract Comparison”

6

Broker checks that the
consumer Pact contract is
compatible with the OAS

from provider

Provider tests

behaviour &

verifies contract

Produces

”Provider Contract”

/* walk through */

can-i-deploy

Products API

JSON/HTTP

DEMO …ish

› Provider API
› Products API written in C#

› Using Schemathesis to test the API

› Consumer
› Product API Consumer Client (C#/.NET core)

› Consumer testing using Wiremock as mocking tool

› GitHub Actions for CI

Provider – Test using Schemathesis

Provider – CI using GitHub Actions

Pactflow – Provider contract published to broker

Consumer – Test
using xunit and
wiremock

Consumer – Test generates pact.json file

Consumer – Another CI using GitHub Actions

Consumer - Pactflow

Potentially Breaking Change

Product Owner:
“Please remove DELETE method,

it’s for admin API only”

Potentially Breaking Change

A Breaking Change
Product Owner:

“The Metrics are killing us –

reduce the errors ASAP”

A Breaking Change

The Matrix – information to safely promote

Rebalance the approach to microservices testing

› Reduced E2E tests

› Reduce integration tests

› Reduce assumptions

› Increase delivery confidence

› Deploy independently

› Scale predictably
Unit Tests

Integration

Tests

E2E

Tests

The test pyramid

F
e
e
d
b
a
c
k

L
o
o
p
s

Hours

Minutes

Seconds

Confidence

E
f
f
o
r
t

&

F
r
a
g
i
l
i
t
yHigh

Medium

Low

Speed

Contract Tests

Cheap Fast Reliable Targeted

/* Problem addressed: unbalanced testing strategy */

Benefits for Design-First

› Visibility into consumers

› Reduce the need for API major versioning

› Prevent breaking changes – reducing assumptions (drift)

› Know when it’s safe to deploy new changes

› Better conversations

› Design-first with confidence

/* Problem addressed: lack of visibility into how consumers are using an API */

Thank You!

› Connect:

@frank-kilcommins

@fkilcommins

frank.kilcommins@smartbear.com

Give it a try
Head to go.pactflow.io/design-first

Resources contributing to this talk:

› https://smartbear.com/state-of-software-quality/api/

› https://www.postman.com/state-of-api/

› https://docs.pactflow.io/docs/workshops

› https://www.youtube.com/watch?v=a-JoVnpZzNg - (Erik Wilde – Designing APIs for Extensibility)

› https://www.sealights.io/webinars/achieving-quality-at-speed-in-a-modern-

software-world-microservices-delivery-without-the-pitfalls/ - (Seb Rose)

https://go.pactflow.io/design-first
https://smartbear.com/state-of-software-quality/api/
https://www.postman.com/state-of-api/
https://docs.pactflow.io/docs/workshops
https://www.youtube.com/watch?v=a-JoVnpZzNg

	Default Section
	Slide 1: Let’s make a Pact
	Slide 2: I’m Frank Kilcommins
	Slide 3: Talk Track
	Slide 4: API Landscape Trends
	Slide 5: API Landscape Trends
	Slide 6: API Landscape Trends
	Slide 7: Designing for Extensibility…..helps!
	Slide 8: Designing for Extensibility…..helps!
	Slide 9: Designing for Extensibility…..helps!
	Slide 10
	Slide 11: Pitfalls remain
	Slide 12: Pitfalls remain
	Slide 13: Pitfalls remain
	Slide 14: Pitfalls remain
	Slide 15: Pitfalls remain
	Slide 16: Pitfalls remain
	Slide 17: Pitfalls remain
	Slide 18: “If you can’t deploy services independently, you don’t have microservices” – Beth Skurrie
	Slide 19: “If you can’t deploy services independently, you don’t have microservices” – Beth Skurrie
	Slide 20: Bi-Directional Contract Testing
	Slide 21: Bi-Directional Contract Testing (BDCT)
	Slide 22: What’s a Pact
	Slide 23: What’s a Pact
	Slide 25: BDCT – How is works
	Slide 26: BDCT – How is works
	Slide 27: BDCT – How is works
	Slide 28: BDCT – How is works
	Slide 29: BDCT – How is works
	Slide 30: BDCT – How is works
	Slide 31: DEMO …ish
	Slide 32
	Slide 33: Provider – Test using Schemathesis
	Slide 34: Provider – CI using GitHub Actions
	Slide 35: Pactflow – Provider contract published to broker
	Slide 36: Consumer – Test using xunit and wiremock
	Slide 37: Consumer – Test generates pact.json file
	Slide 38: Consumer – Another CI using GitHub Actions
	Slide 39: Consumer - Pactflow
	Slide 40: Potentially Breaking Change
	Slide 41: Potentially Breaking Change
	Slide 42: A Breaking Change
	Slide 43: A Breaking Change
	Slide 44
	Slide 45: The Matrix – information to safely promote
	Slide 46: Rebalance the approach to microservices testing
	Slide 47: Benefits for Design-First
	Slide 49: Thank You!
	Slide 50: Give it a try

