
Microservices from
DevOps perspective

Main topics

● What are Microservices and why use them?

● What is DevOps and how is related?

● What are the challenges then?

● Where to start our CICD planification? What to consider?

● Where to go?

…application architecture that breaks an application into various service components compared to a
traditional monolithic architecture…

Microservices

Definition

Wikipedia: A microservice architecture is an architectural pattern that arranges an application as a
collection of loosely-coupled, fine-grained services, communicating through lightweight protocols.

Microservices solve the challenges of monolithic systems by being as modular as possible…

…development method that breaks down software into modules with specialized functions and
detailed interfaces…

What are Microservices and why use them?

Microservices

Why to use them?

● Fault Isolation and Application Resiliency

Features and information domains are separated into different services or API’s, so if one is affected the rest of
the application will still working.

● Data isolation

Each information or data domain and its related logic will be owned by a single service. This carries with benefits
as simplifying schemas updates, reduce or isolate risks on database updates and help for a loosely coupled
communication within services.

● Scalability

In a Microservices architecture each component has the ability to scale independently, by its own metrics and
possible dedicated rules, resulting in a significant increase in resource consumption efficiency.

● Independent Deployment

Smaller and retro-compatible software increments over different services allows individual deployments,
reducing the risk of affecting the entire application, outages and general downtimes if any.

What are Microservices and why use them?

DevOps

App Team

DevOps

App Team

DevOps

What is DevOps and how is related?

Cultural vs Tech Industry Position

Cultural: Is a set of practices that combines software development (Dev) and IT operations (Ops). It aims to shorten
the systems development life cycle and provide continuous delivery with high software quality.

Position: In a more practical way is a cultural concept mistakenly converted into a software position by industry. It’s
a role present into an Application Development team principally in charge of CICD automation.

Full DevOps Team
App Team

App TeamApp Team

COE

Operational Model

DevOps

What is DevOps and how is related?

Microservices and DevOps

App Team

Microservices architecture
based solution

● Firewall

● API Management

● Load balancers

● DNS

● Databases

● Cache

● Messages

● Logs

● Traces

● Infrastructure

● Environments

● Repositories + Branches

● Versioning

● Pipelines

● Quality

DevOps

What are the challenges then?

● Promoting code through Branches

Mostly in multi-repository than single-repository scenarios, though either,
App Teams will lead with merging code from features and hotfixes branches
to mains and depending on how deployments are triggered this frequently
could consumed an important amount of time.

● High complex deployment scenarios

Releases with multiples Microservices involved getting aligned on each
environment for quality and user validation, each of those with its schemas
updates, configuration changes either environment and/or application.

● Retro-compatibility

Microservices features into small code iterations with a retro-compatibility
development strategy in order to allow independent deployments not
affecting not current consumers.

Challenges with Microservices

● Quality assurance

Validate features or software increment iterations, look for application
regressions over multiples environments always aiming for having
symmetrical services and schemas scenarios.

● Databases updates

Schemas and data updates may require other data specialized team
involvement attempting against the governance of the App team on the
iteration of its solution.

● Debugging

High distributed logs due an architecture implicit bigger amount of
components makes harder to drill down to errors root source.

DevOps

Where to start our CICD planification? What to consider?

Planification guide

Branch
Strategy
Look for an App Team
general consent

CICD
Strategy
Split integration from
delivery/deployment

Configuration
Develop policies and split
to reduce Application
Environment

Quality
Assurance
Automate your testing

Lightweight
Microservices
Centralized responsibilities

E2E Tracing
Integrate APM tooling and
integrate your logs and
business traces

Feature Flags
Remove business from
backend continuous
deployment

DevOps

Where to start our CICD planification? What to consider?

Branch Strategy

● Go with Trunk-Based-Development

As a counterpart avoid getting into too complex other kind of branch strategies, the idea of adopting Microservices architecture is
strongly related with smaller changes, retro-compatibility, automated validation and increasing production deployments
frequence.

● Use GIT Tags for versioning

GIT Tags doesn’t require commits then become simpler to automate the versioning. You’ll be able to automate dashboards with
environment Microservices versioning and several other processes such as environment nivelation, manual quality assurance,
debugging your application, etc.

● Use Build Validation features

Put all existing mechanisms to prevent merging buggy code. Build Validation can trigger different pipelines where its succeed
become part of the pull request required completion policies.

● Version your API’s

Use same versions you included in your repo tags to correlate API’s versioning into your API Manager proxy tools in order to offer
those different versions. Then deploying multiple versions of those services is going to be required as backend part of your
published API’s.

DevOps

Where to start our CICD planification? What to consider?

Lightweight Microservices

● Remove unnecessary roles from Microservices

Avoid software code duplication, keep your microservices small. Attend only for your
methods and leave the rest where it belongs. Authentication, App roles or User accounts
dedicated Microservices may be centralized roles within your IdP or Api Manager proxy tool.
Extract JWT authentication information into headers and ship them to your Microservices.

● Avoid develop your own Identity Provider (IdP)

Use external ones, don’t deal with extremely complex authentication services by yourself,
you’ll lose your time and you’ll probably build an insecure solution.

● Use App Roles

Another example is to avoid developing a full data model and its associated Microservices to
offer roles in case your application needed. Get benefit from existing IdP roles features
where the entire configuration rely over IdP as declarative objects. You can handle most of
them using IaC in order to automate it and transfer keys to vaults where needed.

● Split Integration and deployment pipelines

General idea is to decrease the amount of builds to minimal expression and

trigger separate pipelines to carry with deployment role.

● Promote Artifacts

As another must, not just for Microservices, you have to deploy exactly the

same you’ve test.

● Use Templates

For both Integration and Deployment pipelines, reduce duplication as much

as possible and code your Branch Strategy conditions there. Is a channel to

introduce changes on your CICD automation and massively impact all your

Microservices.

● Consider additional Triggers

You can trigger your pipeline by just tagging a branch including another cross

validations to avoid mistakes such as branches names, specific folder

changes, or other builds executions to match all your expectations. Code

your pipeline to reduce development and deployment efforts, you’ll find a lot

of improvement space there.

● Automate your Schemas iterations

Writing down into your repos your databases scripts and serves to iteration

tools during deployment pipeline execution should be a mandatory

requirement to deal with schemas updates. This extrapolates to other

schema based services as cache, events, etc.

● Automate your API’s definition iterations

Another mandatory requirement, extract API’s definitions from code during

integration, save then as artifacts and user them with corresponding tasks

during deployment pashes.

DevOps

Where to start our CICD planification? What to consider?

CICD Strategy

DevOps

Where to start our CICD planification? What to consider?

● Variables Policies

Establish a well agreed App configuration variables policies and reinforce them
with your team for its accomplishment.

● Environment variables for App Properties

At least main code languages allows to consume environment variables when
loading as application properties. On promoting scenarios where same
artifact is executed in different environments this feature is key.

● Common infrastructure environment variables in Kubernetes

Aiming for reducing duplication an accelerate infrastructure changes when
needed you can create an automate another category of variables, those
commons to each microservice and related with environment assets like cross
services domains, dependencies base-url, dependencies credentials, etc. Then
you’ll be able to deploy infrastructure configuration changes and massively
update your Microservices configuration.

Configuration

Variables (Example):
Environments and types

Env. Affected Env. Not Related

Sensitive Vault Vault

Non-Sensitive Library / Group App properties file

DevOps

Where to start our CICD planification? What to consider?

● Understanding limitations

Discuss with your App Team wath everybody understand and expect for Quality
Assurance and positions related. Distinguish between business related features
validations over Developers’s technical user stories.

● Code your Tests

The more frequent and unattended desire for deployments the more testing automated
needed. Consider a Tester Automation position in order to code for performance testing
and integration testing. Include gate-policies for your code coverage and quality level.

● Quality assurance vs user acceptance environments

Understand the purpose of each environment, don’t mix roles during QA and UAT phases.
QA as near to developers and test automated as possible and UAT to dedicated business
user validation if needed.

Quality Assurance

DevOps

Where to start our CICD planification? What to consider?

● Use an Application Performance Monitoring tool

Besides its enormous contribution on tracing and profiling your Apps getting
performance and behaviour information you can include additional traces as business
events, logs and most of your apps dependencies, all of them correlated.

● Real time Business monitoring from APM

Do not access Microservices databases for Business operational monitoring. Use instead
an external tool like APM to insert business events.

● Limit the amount of traces ingestion

Ingestion and indexing is a performance and economic cost you wants to efficiently
delimit. Add daily caps into your ingestion service, sampling on higher environments and
avoid duplication.

E2E Tracing

DevOps

Where to start our CICD planification? What to consider?

● A different paradigm

Have your business features and its user acceptance based on configuration flags

distributed or centralized by Microservices on environment variables or configuration

endpoints.

Use refinement meetings to convert business features to small Microservices oriented

and high technically detailed User Stories.

Move finally to Continuous Deployment with Backend by promoting strongly validated

changes to production as automated and unattended as possible.

Feature Flags

DevOps

Where to go?

Further consideration

● Canary deployments

Add as many stages on continuous deployment as segments of users you have isolated and identified.
Exponentially Increase the percentage of your features availability by continuously getting its
operational feedback.

● Configuration server

Having an endpoint API with environment configuration will accelerate changes propagation and
configuration governance.

● Infrastructure as code

Another paradigm change. By coding infrastructure you get benefits such as symmetrical
environments, Infra disaster recovery, Infra environment testing, reduce iteration risks.

● Center of Excellence

“...Cross functional team who provides best practices, research, support or training for a focus area”
[Wikipedia]

(This humble presenter)Gaston Cacheffo
Tech Manager at Globant

gaston.cacheffo@globant.com

(Collaborator)Luis Pulido
Solution Architect at Globant

luis.pulido@globant.com

Create your way forward

Thank you
for joining!

mailto:gaston.cacheffo@globant.com

