

—

ArgoCD or Flux ?
A GitOps comparison

2023.01.26

— Disclaimer
It’s not about the “best”00

● We do not advocate for a frontal opposition between Flux & ArgoCD

● We target a broad understanding of the philosophy which drive both tools

● Both come with their own assets and tradeoffs

● We worked with both solutions. The vision we bear is subjective but aims to be objective

● Don’t hesitate to contact us on the Discord channel :)

— Our comparison criteria
On what ground ? 00

● In order to be the most relevant, we decided to have a wide array of criteria

Criteria Description

Model How the tool is thinking the GitOps paradigm

User Experience Day1, Day2. How easy is it to stay aligned with the promises

Benchmarking CPU/RAM Requirements, Scalability, elasticity, …

— Why comparing Flux with ArgoCD ?
Two approaches which need to be clarified00

● Two majors implementations of GitOps in a Kube native context. In terms of
○ Community
○ Recognition
○ Adoption

● It’s a question we often see with our clients

● We haven’t seen yet a comparison that satisfied us

● And frankly, who never wondered ?

Prologue
00

— GitOps in a nutshell
A kind reminder: a CI AND a CD00

● GitOps is a continuous Deployment pattern which favors “pull” approach over the classical “push” one

● Not theoretically bounded to k8s but the latter is by design adapted to GitOps

Artifactory

Deployment
platform

CI/CD CI and CD

Deployment
platform

CI/CD pipeline CI pipeline

Artifactory

Deployment Agent

watch apply

— GitOps, what for ?
Ok, so ? 00

● No additional deployment tool to install in our pipeline

● No secret to store either

● Git as our source of truth for our platform infrastructure

● Capacity to remove access to the platform

● Deployment is purely declarative

● Possibility to use the Git provider permission to ease collaboration between dev & ops

An overview
01

— Flux and ArgoCD in a nutshell
Few words01

Flux ArgoCD

One line presentation Open and extensible continuous delivery solution
for Kubernetes

Declarative continuous deployment for Kubernetes.

First commit datetime FluxV1: 2016-07-07T12:32:02Z
FluxV2: 2020-04-24T09:38:22Z

2018-02-15T00:53:07Z

Github stars 4.3k ⭐ 11.8k ⭐

CNCF Graduated 🎉 since November 2022 Graduated 🎉 since December 2022

Sponsor WeaveWork, then donated to the CNCF Intuit, then donated to the CNCF

Integration Flagger, Weavework GitOps ArgoProj

— Last but not least
Not a good idea...00

Model
02

— GitOps model
What is this all about ?02

● Flux & ArgoCD are both GitOps implementations

● Both comes with their own conceptions on how to understand GitOps

● Understanding the model i.e. the manipulated entities and their relationships is an important first
step in comparing the tools.

● Given the maturity of the both tools, we think that model differences will weigh a lot in the decision
choice between Flux & ArgoCD

— Operator pattern, kind reminder
Extending the Kubernetes API02

● "An operator is a client of the Kubernetes API that acts as a controller for a Custom Resource."

● We extend the k8s model by defining a CRD and its associated controller → k8s now understands your logic

API

Pod Deployment JobFoo

Pod Controller Deployment Controller Job ControllerFoo Controller

● k8s manifests

FLUX

— Flux entity model
The GitOps Tool Kit (gotk)02

— Sources
Where to find artifacts 02

● Represents an artifact storage where Flux would synchronize from
● Several types

○ Git Repositories
Allow to define to flux your source of truth repositories. Central type to the GitOps paradigm

Specialized source type to reference artifact sources needed for our Pod, Deployment, Job, …
○ Buckets
○ OCI Repositories
○ HelmCharts & Repositories

— Source examples
Extending the Kubernetes API02

● Extracted from the official documentation

apiVersion:
source.toolkit.fluxcd.io/v1beta2
kind: GitRepository
metadata:
 name: podinfo
 namespace: default
spec:
 interval: 5m0s
 url:
https://github.com/stefanprodan/pod
info
 ref:
 branch: master

apiVersion:
source.toolkit.fluxcd.io/v1beta2
kind: HelmChart
metadata:
 name: podinfo
 namespace: default
spec:
 interval: 5m0s
 chart: podinfo
 reconcileStrategy: ChartVersion
 sourceRef:
 kind: HelmRepository
 name: podinfo
 version: '5.*'

apiVersion:
source.toolkit.fluxcd.io/v1bet
a2
kind: HelmRepository
metadata:
 name: podinfo
 namespace: default
spec:
 interval: 5m0s
 url:
https://stefanprodan.github.io
/podinfo

— Kustomization
Extending the Kubernetes API02

● A wrapper entity around Kustomize

● Kustomize is an embedded tool with Kubernetes which enables configuration management through patches
○ No yaml copy/paste
○ No specific yaml version per branch (dev, staging, prod)
○ One base in a parse file, several patches to complete and adapt the base

● Kustomization is a Flux representation of a Kustomize action
○ Make sense in a semantic way “I kustomize ⇔ A kustomization”

● In the flux sens, a synchronisation is the result of at least one Git source and one Kustomization
○ Those two entities represent the big bang of the Flux GitOps approach
○ No {Source; Kustomization}, no synchronisation in the cluster

— Kustomization example
Extending the Kubernetes API02

● Extracted from the official documentation

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2
kind: Kustomization
metadata:
 name: podinfo
 namespace: default
spec:
 interval: 10m
 targetNamespace: default
 sourceRef:
 kind: GitRepository
 name: podinfo
 path: "./kustomize"
 prune: true # remove stale resources from cluster

● In the path spec folder, we expect to find a kustomization.yaml file (the base) which indicates to Flux which k8s
entities to consider

● If absent it is automatically generated and Flux recursively consider all valid Yaml file in the same folder

— HelmRelease
Extending the Kubernetes API02

● A wrapper entity around an helm release

● Helm is known to be a kind of Kubernetes package manager.

● It is a de-facto standard in the Kubernetes community

● You manipulate YAML through a templating language to adapt the content according a context

● Quite often compared with Kustomize which favor patches

● The genius idea of flux is to reconcile both approaches as a Flux Kustomization can target a Flux Helm
Release to adapt its spec through patches and which in turn will render the release with the patched spec.

● It’s not Kustomize VS Helm, It’s Kustomize with Helm

— HelmRelease example
Extending the Kubernetes API02

● Extracted from the official documentation

apiVersion: helm.toolkit.fluxcd.io/v2beta1
kind: HelmRelease
metadata:
 name: backend
 namespace: default
spec:
 interval: 5m
 chart:
 spec:
 chart: podinfo
 version: ">=4.0.0 <5.0.0"
 sourceRef:
 kind: HelmRepository
 name: podinfo
 namespace: default
 interval: 1m
 upgrade:
 remediation:
 remediateLastFailure: true
 test:
 enable: true
 values:
 service:
 grpcService: backend
 resources:
 requests:
 cpu: 100m
 memory: 64Mi

— A “by design” graphical representation
Extending the Kubernetes API02

● What we saw implies a hierarchy between CRDs.

sources

Kustomization

HelmRelease

K8S entities & CRD

Interesting point: k8s entities and CRDs can very well be
Flux entities.
For instance a GitRepository source and associated
Kustomization.
The graph can grow indefinitely and should keep the
property of a D.A.G (Directed Acyclic Graph).
“should” because it isn’t enforced, and if cycles are created,
the Flux reconciliation flow will fail on the Kustomization
creating the cycle.

— A “logical” graphical representation
It depends…on !02

● Somes Flux CRDs offers a “dependsOn” specification to reference other “same kind” entities to tell Flux
that it should install it first. In other words, Flux enables orchestration.

Kustomization1

Kustomization2

HelmRelease1

HelmRelease2Kustomization3

Kustomization4 HelmRelease3

depends on depends on

— Wrap up
Listen carefully, 1, 2, 3…. start !02

ARGO CD

— ArgoCD entity model
A Domain Driven Approach of the GitOps02

— Application
The base entity of ArgoCD02

● A meta entity to describe your Application in the sense of ArgoCD
○ Contrary to Flux it does not really stick to the k8s model.
○ It bring a new first class entity like the Deployment (it’s the ArgoCD’s Deployment)

● Includes the source and the target destination

○ Sources by default can be defined as {plain YAML files, Kustomize, Helm, Jsonnet}
○ Can be augmented with a system of plugin

● All-in-one: Handles raw manifests, helm charts, kustomize and other tools.
○ Contrary to Flux it does not segregate tools per CRDs
○ The cost is an extra complexity in the configuration, and an extra resource consumption by the associated

controller

● Multi-Cluster
App destination can be on the current cluster, or target another one but is visible to the ArgoCD installation by

living in the same cluster as the one where Argo is installed.

● “no accidents” defaults:
○ no resources pruning / cascading by default

■ this means children resources can still exist on the cluster after removing an Application
○ manual apply by default (automatic apply can be configured)

— Application examples
YAML02

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: guestbook
 namespace: argocd
spec:
 project: default
 source:
 repoURL:
https://github.com/argoproj/argocd-example-apps.gi
t
 targetRevision: HEAD
 path: guestbook
 destination:
 server: https://kubernetes.default.svc
 namespace: guestbook

spec:
 source:
 repoURL:
https://argoproj.github.io/argo-helm
 chart: argo

● Extracted from the official documentation
● Different source configuration parameter depending the source type

— Config Management Plugin
Enhancing source possibilities02

● Enhance the Application capabilities such as understanding additional config management tools as
source type

● Community driven

● e.g: kustomized-helm
○ Allows you to define sources mixing Helm Charts and Kustomize overlays
○ The chart is rendered, then kustomize overlays are applied
○ It’s the reverse of the Flux approach which applies Kustomize overlays on HelmRelase CRD wich

then render the chart

— Application of Applications
Reflecting Applications02

● An ArgoCD Application can itself point to sources containing Application definitions
○ You can create a DAG of Applications…
○ …which root application centrally control the sync behavior of leaf applications

— Synchronization Hooks
Application Sync lifecycle02

● To specify specific behavior during the Application sync it is possible to bind process executions at
different phases of the synchronization

○ Presync
○ Sync
○ PostSync
○ SyncFail

● Processes are generally represented by K8S jobs that are annotated to be taken into account as hooks

— Synchronization priority
Sync lifecycle02

● Previous synchronization phases are organized by waves which can be represented by a weight
attached to a resource to be sync. The lighter the weight, the higher the priority.

● Weaker than a true depends on relationship but still valuable

● Managed through annotations

● Strongly reminds Workflow management system at smaller scale

— ApplicationProject
Last but not least02

● Represent a logical grouping of Applications

● It’s the ArgoCD’s namespace on steroid

● All Applications belong to an ApplicationProject. By default the default

● Defines common rules for the managed Applications
○ what may be deployed
○ where apps may be deployed
○ restrict what kind of object may or may not be deployed
○ defining roles through RBAC applied to all applications in the project
○ many more

—02 ArgoCD

ArgoCD’s Web UI

—02 Dependency model
ArgoCD’s CRD

● Applications belongs to a Project, default by
default

● Applications will directly create k8s entities
○ helm will be installed with `helm

template | kubectl apply -f .`
● Application can handle workload on another

cluster

AppProject

ApplicationApplicationApplication

k8s entities

WRAP UP

— Wrap up
What to understand02

Flux ArgoCD

model complexity simple model rich model

GitOps approach thin extra layer to Kubernetes promotes its own GitOps entities

Relation to k8s stick to what k8s provides. Kind of k8s GitOps
extension

richer interface to the cost of greater
complexity

Enriching model Operator pattern Plugins

Sync orchestration Strong sync orchestration Sync orchestration by waves

Extra sync actions Init containers Sync phases with hooks

Main CRDs Sources + Kustomization AppProject + Application

Need for an UI ? K9S is enough Most likely bc of the rich parameter
features

multi-{clustering,
tenancy}

03

— GitOps & Multi-clustering
Advanced modeling03

● Multic-clustering
○ Capacity to manage several k8s cluster infrastructures through a single control plane

● From a Gitops perspective
○ Capacity to synchronize applications on several cluster while using a single tool installation

— Flux multi-clustering approach

Cluster1

A distributed control plane03

Flux
Installation
root repo

Cluster2 Cluster3

● Application infrastructure repositories
(Deployments, services, …) and sources (java, php,
python, …)

● Each cluster has a dedicated flux installation

● Each installation is synchronized pointing the same Flux
installation Git repository while specifying dedicated
folder in it

● Contain a flux installation sources per cluster

● Each installation sources kickstart syncing referencing
others {Source + Kustomization}

● {Source + Kustomization} may concern others repository
dedicated to your application Deployments

App1 repo App3 repo

App2 repo

— ArgoCD multi-clustering approach

Cluster1

A distributed control plane03

Cluster2 Cluster3

● Application infrastructure repositories
(Deployments, services, …) and sources (java, php,
python, …)

● Each cluster is registered from the “ArgoCD“
installation cluster (optional)

● No ArgoCD installation

● ArgoCD installed in a unique cluster

● Optional access to other clusters

● Monitoring a root repository to define and store
Application kind resources

App1 repo App3 repo

App2 repo

“ArgoCD” Installation Cluster

Application definitions

— GitOps & Multi-tenancy
Advanced modeling03

● A tenant
○ Segregation quantum. A team, an organisation, an environment,...it really depends of your context

● Multi-tenant
○ Capacity of an entity to embed multiple tenant without interacting with one anothers
○ Capacity of an entity to handle multiple tenants with differents rights on different objects

● From a Gitops perspective
○ Tenant bounded to a namespace

— Flux approach
Multi-tenancy03

● Platform Admin
○ Maintain platform Git repository
○ Manage cluster wide resources (add-ons, CRDs,

controllers, etc.)
○ Onboard Tenant CRDs (Kustomizations,

GitRepository)
○ Manage Tenants namespaces & RBAC

● Tenant Squad
○ Admin of the namespaces and the Git repository assigned

by platform admin
○ Manages application deployment & release

(GitRepositories, Kustomizations,
HelmRepositories, HelmReleases)

● Extracted from the official documentation. A possible approach

— ArgoCD approach
Multi-tenancy03

● Use of AppProject to restrict the rights of the created ressources
○ restrict the destination cluster+namespaces
○ restrict the kind of object created
○ restrict the repo used as source

● integrated RBAC & SSO to restrict the rights of the users on the actions on the UI

User
experience

03

— Our casting
Let’s get party started03

The user team The admin team

We develop applications and rely on the
Gitops paradigm to deploy it (and by the
way, it works on my machine ^^).

We install GitOps tools on the k8s cluster
and are accountable for its behavior (and
by the way, your application fails ^^)

— Day 0 : Organisation
Admin point of vue03

● Before the installation and usage, we must first discuss how the git repositories should be handled

○ Do we want a multi repo ? if so, what scope should each repository have ?
○ How should the repositories be structured ? one folder per environment, per namespace ?
○ Who is responsible for the code in the repositories ?
○ How do we protect the production ? one commit/PR per environment ?

These choices should be discussed before implementing a GitOps solution to prevent refactoring a difficult
codebase in the near future.

— Flux Day 1: installation
Admin point of view03

● Installation
○ Bootstrapped with the CLI : `$ flux bootstrap github`
○ Terraform official Flux datasource combined with Kubernetes provider
○ Community Helm chart
○ A git repository is needed to install flux (or highly recommended); we’ll call it the root

repository.

● Flux’s manifests will be committed to the root repository

● You can add all your manifests in the root repository before or after the installation of Flux
○ On a new cluster, you can point your Flux installation to the existing root repository and all your

applications will be installed.

— Flux Day 1: Configuration
Admin point of view03

● Simple, if you follow the doc
○ each CRD does only one thing
○ GitRepo to `git clone` your repository
○ Kustomization to apply some path on this repository
○ HelmRepository to `helm repo add && helm repo update`
○ HelmRelease to deploy your helm release
○ some minor configurations possible (timing, …)

— Flux Day 2: Update, Debugging, monitoring
Admin point of view03

● day to day : all handled in git - no manual actions required on Flux
○ update → git commit
○ revert → git revert
○ pause/unpause → with annotations, either in Flux or directly on the cluster.

● debugging
○ access to cluster required (CRDs events, flux’s log), usage of k9s
○ OR access to a properly configured Grafana
○ OR access to weaveworks flux’s UI (early project)

● monitoring
○ Grafana → opensource dashboards freely available for Flux)

— Flux Day 2: Update, Debugging, monitoring
Admin point of view03

● Cluster upgrade
○ Can be done with the CLI (a little complex)
○ Can be done with Terraform (simple)

● It is not recommended to use a GitOps installation to directly perform an upgrade of the same installation;
○ either use the recommended way
○ or use another gitops installation to perform the upgrade & maintenance of the first one.

— ArgoCD Day 1: installation
Admin point of view03

● Installation
○ Helm
○ Kubectl apply / Kustomize
○ No initial git repository needed

● Installation type
○ HA ? non-HA ? core-only ?

● No initial ArgoCD Application

● ArgoCD’s installation manifests do not need to be in one of the monitored repositories

— ArgoCD Day 1: configuration
Admin point of view03

● Complex
○ 1 Application with a lot of options
○ should it autosync ?
○ should it prune resources that have been removed from git ?
○ should it delete resources when the Application is removed ?
○ Which wave should it be ? (which applications does it depends on ?)

● But simplified when done with the UI

— ArgoCD Day 2: Update, Debugging, monitoring
Admin point of view03

● day to day
○ handled in git and in the UI, depending on your configuration

● debugging
○ the UI contains information about a misconfigured Application or even why a Deployment is

failing

● monitoring
○ The UI enables you to monitor your gitops deployments easily

— ArgoCD Day 2: Upgrade
Admin point of view03

● Cluster upgrade:
○ using Helm or Kustomize, depending on how you did your initial installation

● Read the release note before upgrading, there may be breaking changes !

—03 Wrap up
User experience

ArgoCD Flux

platform installation simple
with kubernetes standard tools

advanced
with custom tooling, manual

actions

configuration complex
lot of options for different usecases

simple
does one thing, does it well

usage simple simple

safeguards argocd can be configured to need
manual approval before apply

none : a commit to git is a
change in the cluster

Benchmark
04

—04 Comparison points
Benchmark

● Volumetry used
○ Number of final Kubernetes objects created

■ ~ 1400

○ Number of Deployments created
■ 200 (1 pod per deployment)

○ Number of sources monitored
■ 100 distinct git repositories
■ 100 helm releases from the same chart

● Points of comparison
○ Time to deploy all objects
○ CPU & memory consumed before + during the initial application
○ CPU & memory consumed while monitoring the objects for change
○ CPU & memory consumed while removing the objects.

Only the core components will be considered for the benchmark (no webhooks).

—04 Initial setup
Benchmark

ArgoCD Flux

cluster AWS EKS - 5 t3.large

monitored sources 1 root repository

installation non-HA, graphical standard installation (4
controllers)

version 2.6.0 0.38.3

cpu <0.1 <0.1

ram 240MiB 300MiB

—04 Flux Timeline
Benchmark

Memory Usage

First sync Removal
commit

CPU Usage

— ArgoCD’s Timeline
Benchmark

CPU Usage

04

First sync Removal

Memory Usage

—04 Deployment: 100 sources, 1000 objects
Benchmark

ArgoCD Flux

monitored sources 100 gitrepos + 100 helm repos

cpu 3.9 2

ram 2.2 GiB 1.2 GiB

time to deploy all objects ~1mn30 ~1mn30

—04 Day to day: 100 sources, 1000 objects
Benchmark

ArgoCD Flux

monitored sources 100 gitrepos + 100 helm repos

cpu 0.3 0.3

ram 1.4 GiB 500 MiB

—04 Deletion: 100 sources, 1000 objects
Benchmark

ArgoCD Flux

monitored sources 100 gitrepos + 100 helm repos

cpu 2 1

ram 1.4 GiB 500 MiB

time to delete all objects 1mn 30s

—04 Results
● Both are comparable in terms of deployment & update speed : lightspeed

● ArgoCD's resources consumption is higher than Flux’s
○ It comes from the architectural choices of ArgoCD

● In our experience, this difference is increased by the number of deployments / users, and should be
taken into account when designing your clusters.

Benchmark

05
Conclusion

—05 Conclusion

ArgoCD is best-suited for you if

● You don’t want to use an auto GitOps CD

● You want an interactive UI for your users

● You need to ensure some steps remain
manual, e.g. deploying to production

● You want sane defaults preventing accidental
removal of components.

Flux is best-suited for you if

● Your users are experienced in kubernetes

● You don’t need a lot of deployment
options

● Git & k8s RBAC are enough for you

● Your users understand that adding /
modifying / removing something in git will
have a direct impact on kubernetes.

Acknowledgments

Bastien Feuillet

Question Time !

