
Platform Engineering:
Why and How to start

Serg Hospodarets

DevOps and Web contributor

My path Platforms Creator
Title Managed team size

Tech Lead, Architect ~10

Engineering Manager ~20

Director of Engineering 50+

SDirE, Global Head of Eng. 100+

What problem do we try to solve
and Why Platform Engineering?

Problem with the current state of DevOps

Current state of DevOps and problems

1. COMPLEXITY GREW EXPONENTIALLY 👉
Common Problem: Cognitive overload, support
complexity

2. Independent teams topology adopted
Architecture/DevOps problem: No way to align
the technology and architecture
Ops, Security problem: No way to introduce
security scans, patches, centralised monitoring etc.
Business problem: $ cost of solutions entropy. It
also doesn't allow to quickly pivot at scale
Eng. leadership platform: How to follow the "do
more with less" mandate from business

🗣Usual problems and Use cases to enable

- Common: Provide more common tech stack to simplify the hiring and onboarding
- � Dev: What is recommended stack and tools do I use for Front-End/Back-End/Data,
CI/CD, Cloud?
- � Eng. leader: Minimize time to onboarding
- 🔐 Security: Security fix like Log4J
- 🤖 Ops: Automate the company-wide way of security check
- 💸 Business: We acquired a company, how we integrate them
- 💸 Business: Can you operate twice faster and more cost effectively?

So why
Platform
Engineering?

Contributes to
"Do more with less"
enablement

What are the objectives and goals?

🗣Platform as a Product

Main Customers- internal developers first

Main metrics- customers NPS and ADOPTION

1. Define the scope and objectives of your platform
2. Assess the current state of your infrastructure and tools
3. Create a plan for building, maintaining, and scaling the platform
4. Establish a cross-functional team to work on the platform
5. Implement IDP, automation and monitoring tools
6. Establish best practices and guidelines for the teams using the platform
7. Continuously improve and adapt the platform to meet the evolving needs of the

organization.

Teams Topology evolution example
* Prerequisite: Define company common tools, like
CI/CD (Gitlab, Github...),
Cloud provider (AWS, Azure...),
current target tech-stack (Java, React...) etc.
If it's not done, check if you need a Platform at this
point.

- pick a pilot team carefully, to get a customer and evangelist
- target some of Product teams become "X as a service"

IDP* target and evolution example* Internal Development
Platform

How to create Platform Engineering org
and Platform itself?

Tooling: Engineering Portal

First step- simple static docs:

-

Next step:

For scale:
-

- Docusaurus- create simple versioned doc sites
Slate- simple static docs for API

- Backstage- open-source Internal Development Portal

Roadie- paid Backstage SaaS

https://docs.guidewire.com/jutro/documentation/8.3.0/quickstart/
https://jamstack.org/generators/docusaurus/
https://github.com/slatedocs/slate
https://demo.backstage.io/
https://backstage.io/
https://roadie.io/

Tooling: Front-End
 - Frontend workshop for UI development (React, Vue, Angular, JS)

- - Provide own app templates
- - own app configs

- Storybook
Create React apps self-service
Customize app config

https://docs.guidewire.com/jutro/storybook/8.3.0/?path=/story/address--basic&args=countrySelectionType:selectable&globals=theme:Enterprise
https://storybook.js.org/
https://create-react-app.dev/docs/custom-templates/
https://github.com/dilanx/craco

Tooling: Configurable Microservices/Apps self-service

Create a microservice [optionally, with microfrontend]
- (CLI)
- (Web-based)

Other:
-
-
-

https://www.jhipster.tech/creating-an-app/
https://start.jhipster.tech/generate-application

Provide own application templates
Integrate you CI/CD
Define DB, Testing tooling, Monitoring etc.

https://www.jhipster.tech/creating-an-app/
https://start.jhipster.tech/generate-application
https://www.jhipster.tech/modules/extending-and-customizing/
https://www.jhipster.tech/setting-up-ci/
https://www.jhipster.tech/#:~:text=Protractor-,Server%20Side%20Options,-Spring%20Boot

Tooling: Upgradability

Front-End: /
Microservice and infra:
Dependencies:

Codeshift Codemods
JHipster Upgrading application

Renovate- multi-platform and multi-language.

https://github.com/facebook/jscodeshift
https://github.com/reactjs/react-codemod
https://www.jhipster.tech/upgrading-an-application/
https://docs.renovatebot.com/

More details and resources on Platform Engineering

https://shospodarets.github.io/awesome-platform-engineering/

https://shospodarets.github.io/awesome-platform-engineering/

Tips from experience

- Pilot team(s) is super important to become evangelists

- Treat as product as soon as possible- enable business
problem, and use technology to do it
1. Treat internal teams as customers, provide support,
Slack etc. channels
2. Invest in Platform PM and DevX culture
3. Evangelise- regular releases, demos, newsletters

- For UI adoption put heads together with the UX

- Jackpot Platform strategy- find a way and deliver
your platform to your company customers

Inspirational 🗣
- Prefer golden path over golden cage
- Always think on Thinnest Viable
Platform
- Target the right level of abstraction
- Establish the proper "X-as-Service" or
similar definitions for each team
- Foster the Pull vs Push culture
- Work with leadership for a top-down
support for bottom-up enablement

THANK YOU!

Slides:

Platform Engineering resources:

 ⭐

https://slides.com/shospodarets/
platform-engineering

https://github.com/shospodarets/
awesome-platform-engineering

https://slides.com/shospodarets/platform-engineering
https://github.com/shospodarets/awesome-platform-engineering

