
Sinan Kucukkoseler

Move fast without breaking things

• High quality threshold

• Experimentation

• Morale

Why?

More than often, spending  
%10 extra time will prevent %90 of
the issues you’ll face later otherwise.

More about me:

Working in
tech for 10

years.
 
 
 

Product
minded

engineer.
Technical

lead.

ThoughtWorks
New Relic
Shopify

  
 
 
 

 
Distributed
Systems. 

 
Complex
Systems.

Yellow

Sinan Kucukkoseler

Move fast without breaking things

How to plan

A team should be
doing the most
important thing,
at any given time.

System design +
architecture

Evolutionary
Architecture

https://www.thoughtworks.com/en-es/insights/blog/microservices-evolutionary-
architecture

Keeping complexity
in control

More than often, spending  
%10 extra time will avoid %90 of the
issues you’ll face later otherwise.

Prioritisation

Parts that:

• Connect the pipes and build the walking skeleton

• Are complex to build, risky

• Holds unknowns

High value + high complexity

Integrations

• Downstream:  

timeouts, retries, back-off policies, circuit breaking. 

• Upstream: 

bulkheads, load shedding, rate limiting.

Testing

• Staging/test environments

• Load

• Diversity

• Shadow release

Building for resilience

• Map possible problematic, error scenarios

• Sudden increase in ingress load, db becomes bottleneck.

• API calls gets throttled.

• Caching cluster is unavailable. 

• Decide how to react to these before they happen!

• Have a run-book

Building for resilience

• Auto-scaling + warm-up

• Immutability

• Let us retry parts of our flow

• Compartmentalising

• Lets us deprioritise less important, non-time sensitive tasks

• Scale them separately

• Run-time configuration management

• Add it while you build!!

• Start with the question:

• “How do we know if X’s working well?”

• Success rate of an API call / a process

• Response time for a user request

• # of requests served per second

• Start alerting from day 1!

Observability

Adaptability

• Modes of behaviour

• Performance testing

• If critical, start testing early. Use as a gateway

• Run game-days!

• Manual testing or load simulation

Re-cap

• Set your priorities clearly.

• Evolutionary architecture, optimise for less complexity.

• Walking skeleton. Tough tasks first.

• Secure integrations.

• Map out incident scenarios, create your run-book.

• Build optimising for resilience. Immutability + compartmentalise.

• Observability from day 1.

• Performance testing 

Thanks!

sinan.kucukkoseler@gmail.com 
linkedin.com/in/sinank

