
COMPELLING
CODE REUSE

IN THE ENTERPRISE

“GOOD PROGRAMMERS KNOW WHAT TO WRITE.
GREAT ONES KNOW WHAT TO REWRITE AND REUSE”

ERIC S. RAYMOND

TRAVIS GOSSELIN
PRINCIPAL SOFTWARE ENGINEER

DEVELOPER EXPERIENCE

@TRAVISJGOSSELIN

www.travisgosselin.com

DEVELOPER
EXPERIENCE

WHAT IS THAT…EXACTLY?

page 4

Developer Experience is the
activity of studying, improving
and optimizing how
developers get their work
done.

“ ”

theappslab.com (2017)

User
Experience

Development
Principles

Developer
Experience

Developers work in rainforests, not
planned gardens.

“ ”
a16z.com

https://future.a16z.com/the-case-for-developer-experience/

IDENTIFIED HORIZONTAL FAST TRACKS TO BE
CURATED FOR MAXIMUM PRODUCTIVITY.

DEVELOPER
EXPERIENCE:
CAPABILITIES

page 5

Development Operations Cost Security

Build & Deploy a New Feature to Production

Build & Deploy a New App from Scratch

Code Reuse

API Design

DEVELOPER EXPERIENCE & CODE REUSE

page 6

Developer
Experience

Reusable Code

OSI Model (Networking)

Application Runtime (Language)

Machine & OS

Container Runtime

Web Application Framework

Data Access

HTTP
Library

DB Drivers

Utilities

Your Org / Custom Domain

Requests & Contracts

Code Reuse … is the act of recycling or repurposing code parts to improve existing or to create new software.
Write it once, use it multiple times.”

“ ”
filestack.com

COMPELLINGCODE REUSE
Definition

page 7

COMPELLING

1: as to force or push toward a course of action.

“ ”
Dictionary.com

COMPELLING

2: having a powerful and irresistible effect; requiring acute
admiration, attention or respect.

“ ”

Dictionary.com

THEORITICAL CODE REUSE
Incrementally Sharing Code in a Project

page 8

Module A

Module B

Module C

Function A

Module D

Function A

Project A
Project B

Module A

Project C
Module A Function A

Repository A Repository B

Module A
Project A

DISTRIBUTED CODE REUSE
Its Always Harder at Scale

page 9

Service A
Function A

Service B

Service C

Service D

Package

Large Dependency Chains

Intentional & Necessary Effort

Administration, Cost &
Ownership

Roadmap, Politics &
Opinions

Exponential Flaws &
Vulnerabilities

Competition

Enhancement Friction

Multiple Active Releases

Polyglot

Service E

NO CODE SHARING IN MICROSERVICES
Myth & Reality

page 10

Microservices eschew code reuse, adopting the philosophy of
prefer duplication to coupling: reuse implies coupling, and
microservices architectures are extremely decoupled.

“ ”

Building Evolutionary Architecture

Code reuse can be an asset but also a potential liability.
Make sure the coupling points introduced in your code don’t
conflict with other goals in the architecture.

“ ”

Building Evolutionary Architecture

Duplicate?

Reuse?

DIMINISHING RETURNS
Copying Code

page 11

Site Pen – The Law of Diminishing Returns

Resources

C
o

st
s

Reusable CodeCopied Code

TemplatingCoupling

ARCHITECTING CODE REUSE
How do we mature our code reuse practices?

page 13

Libraries

Code Reuse
Practices

COUPLING

Reuse

Use it more than once
from a single code

base.

Duplicate

Use it more than once
from multiple code

basis.

Reference

Code
Knowledgebases &

Examples

page 14

Coupling is the degree of interdependence
between software modules:

• A measure of how closely connected two
routines or modules are;

• The strength of the relationships between
modules.

“ ”

Wikipedia

“HOW THE PIECES OF THE ARCHITECTURE
CONNECT AND RELY ON ONE ANOTHER”

COUPLING
Code Reuse Example

page 16

S3 Multi-Part Upload

Service 1 Service 2

Cloud Package

Download Service

Low-Level Code

Inflexible & Specific

Error Prone

Difficult to Test

Identified Need

Module Growth

Proprietary Library

Framework Dep.

Service x
Service x

Service x

Dependency Chain v2

Save 100 LOC

COUPLING
When to Reuse?

page 17

Emerging Need

High Duplication

High Complexity

High Risk

High Change Frequency

Low Coupling on
Architectural Dimensions

Best Practices & Principles

betterprogramming.pub

Authentication & Authorization

Operational Opinions like Logging & Monitoring

Support Code

Standardized Configuration and Platform Features

HTTP Client SDKs / Wrappers

Error Handling & Validation

Serialization

Technical & Cross Functional Concerns

Reuse

COUPLING
Reuse at SPS Commerce

page 18

Errors

Identity

Logging

Serialization

Secrets

Opinionated Structured Log Format: Consistency in Operations, Dashboarding, Review

Non-Business Domain Shared Modelling & Consistency in Log Output & API Design First

Shared HTTP SDK & Authorization Framework & Algorithms with thorough Testing

Standardized Serialization Rules Across all APIs

Opinionated AWS Secret Manager JSON Format / Cross-Account Development

sps-shared

COUPLING
Appropriate Coupling

page 19

Feature Flagging

Dimensions of the architecture [that] should
be coupled to provide maximum benefit with
minimal overhead and cost.

“ ”

Building Evolutionary Architectures

The more reusable code is, the less usable it
is.

“ ”
Building Evolutionary Architectures

Consistent Logging Format
Operator

Usage
Reusable

Dashboards

Flag Keys Flag Cleanup

Service 1 Service 2

Feature Flag Library

• Keys: (“UseEmailProvider”)

• User Context (“Id”, “Department”)

User Context

COUPLING
Traditional Animation Process – Duplicating vs Reuse

page 20

Behind the Scenes of ‘The Lion King’ – The Animators Speaks

Reuse

Duplicate

COUPLING
Just Copy It!

page 21

Incorrect Abstraction
Duplication

Low Overhead to
Savings Ratio

Diversified Opinions

Reuse Savings = Duplication Cost vs Reuse Cost

Duplicate

Low Feasibility

Prefer duplication over the wrong abstraction.“ ”
Unknown

It can be better to copy a little code than to pull in a big
library for one function. Dependency hygiene trumps code
reuse.

“ ”
Rob Pike

COUPLING
SHARING UTILITY LIBRARIES

Library: MyOrg.Module.Utilities

Content:
• Cooking Kraft Dinner in the

Microwave
• Building Custom Furniture

Snippets

TEMPLATING
ELIMINATING BOILERPLATE FOR ENTIRE

PROJECTS

Project Seeds Service
Templates

Service Chassis

page 43

TEMPLATING
Project Seeds

page 44

Metadata

Folder
Structure

Required
Files

Templated
Workflow

Defaults

Project Seed: Very high-level reference point for starting a new
application that typically provides standardized folder
structure along with SDLC workflow via templated files.

“ ”

org/new-service

Repository TemplateValue

Seed

Cost Low

Copy

TEMPLATING
Service Template

page 45

Service Template: Opinionated reference for specific
application and language types that reduces boilerplate setup
and provides consistency on cross-cutting concerns.

“ ”

Value

Seed

Service
Template Security

External
Config

Logging

Health
Checks

https://microservices.io/patterns/service-template.html

Metrics

Tracing org/new-service
Tokenized

Parameters

Cost Medium
(Increasing Over Time)

TEMPLATING
Service Chassis

page 46

Value Cost Medium

Seed

Service
Template Security

External
Config

Logging

Health
Checks

Metrics

Tracing org/new-service

Authorization
Secret

Manager
Logging Tracing Health Checks

Reference

Reference

config

config

config

config

config

config

TEMPLATING
Service Chassis

page 47

Value Cost Low

Seed

Service
Template

bootstrap

org/new-service

Authorization
Secret

Manager
Logging Tracing Health Checks

Reference

Reference Service Chassis:
REST API

config

New Module

config

TEMPLATING
The Service Mesh Gap

page 48

Kubernetes Cluster

Istio-proxy
Code

Pod

Container
https://foo.com/users

egress

tracing

logging

auth

metricsmTLS
errors

Chassis

DEVELOPMENT
Distribution

page 49

Library

V1.1.4

NuGet

App / API

Initial Install

Vulnerability Detected

Major Upgrade

Need New FeatureDependabot

Private Feeds

Configurable

Ecosystems

Pull Requests

TEMPLATING
Service Chassis at SPS

page 50

Errors

Health Check

Identity

Logging

Secrets

Tracing

API Chassis

Error Format V1

Error Format V2

/up

Kubernetes Probes /healthz

Specialized Context

Structured JSON Output

AWS SSM Parameter Store

AWS Secret Manager

Resilient HTTP Clients

Remote / Distributed Auth Handlers

Serialization

Propagators

AWS XRay

OpenTelemetry

Newtonsoft.Json

System.Text.Json

Snake Case

Sentry

Global Exception Handling

“camelCase Serialization

Authenticated Endpoints

CORS Defaults

Strict Security Headers

HTTPS Redirect

Swagger

Index Redirect

Reusable Logging
Dashboards

Security
Middleware

TEMPLATING
Service Chassis at SPS

page 51

dotnet new webapi
dotnet install Spsc.Service.Chassis

SpsHost.RunService(args, () => {
var builder = WebApplication.CreateBuilder(args);
builder.AddSpsServiceChassis(config => {

config.ServiceName = "My Service";
config.Environment = "integration";

});
builder.Services.AddControllers();

var app = builder.Build();
app.UseSpsServiceChassis();
app.MapControllers()

.RequireAuthorization();
app.Run();

});

config.EnableSpsJsonFormat = SpsJsonFormatOption.SnakeCase;
config.EnableSentry = false;
config.HealthCheckOptions = options => {

options.TimeoutSeconds = 30;
};

COMPELLING CODE REUSE
Culture

page 54

Where can you make incremental gains and achieve value?

Code reuse is widely accepted as a "good thing", but
it's important to manage your expectations of what
it might deliver.

You're more likely to be successful if you accept the
limitations of your environment and restrict the
scope of code reuse to something achievable that
can add genuine value and gain widespread
acceptance.

Instead of developing grand designs for an internal
code framework, it's often best to start small,
develop iteratively and progressively build on small
successes.

“ ”

ben-morris.com

COMPELLING CODE REUSE
IN THE ENTERPRISE

page 57

TRAVIS GOSSELIN

www.travisgosselin.com

@travisjgosselin

Appropriate Coupling

Code reuse is the Holy Grail
of Software Engineering.

“ ”
Douglas Crockford

Service Templates &
Chassis

