Stop Committing Your Secrets -
Git Hooks To The Rescue

Conf42: DevSecOps 2022
CONF42

@mcdwayne

Hi, ’m Dwayne

Dwayne McDaniel

| live in Chicago

I’ve been a Developer
Advocate since 2016

On Twitter @mcdwayne
Happy to chat about
anything, hit me up
Besides tech, | love improv,
karaoke and going to rock

and roll shows!

@mcdwayne

About GitGuardian

GitGuardian is the code security platform for
the DevOps generation.

With automated secrets detection and
remediation, our platform enables Dev, Sec,
and Ops to advance together towards the

Secure Software Development Lifecycle.

@mcdwayne

¢ INTOIrMAUOND s

computer g hig data data storage m:m_<N0. browse Umnm

rowse’ g internets:.

<)
c
>
)
=

©
O
S
®

_=ﬁm=mnﬂ — computer intellect jntellect U— Qm.ﬂm

G_Q data [l-rayze _o_m o
browse

Qmﬂm mﬂoﬂ_mm m _Wmm%mw _uasmmoimm computer

intellect

Data
big data

analyze r_os_g_ﬁ

know ma e information ®
sh.:@*wﬁ%-@@ 9€ browse _io_i.m:o: f ti _Sﬂm—.smﬁ
data storage no 3 m ﬂ_:ﬁm_ﬁmﬁ

big Q m knowledge

= information noauc...m_. inellect

age knowledge internet

-8

A Few Incidents
Uber

e Reported: 15 Sept, 2022

e Teenager from the LapsusS hacking group phished login
info from a super admin

e Immediately discovered access credentials hardcoded in
PowerShell scripts that allowed pwnage

e Reported firstin the New York Times

@mcdwayne

=8

A Few Incidents
Toyota

e Reported: 7 October, 2022

e Asubcontractor hired to work on the Toyota T-Connect
source code pushed a private codebase into a public
GitHub repo.

e Therepo contained access credentials for a data server,
which exposed the emails of 296,019 customers

e Therepo was public from December 2017 to September
2022 - 5 years!

@mcdwayne

=8

A Few Incidents
Samsung

® Reported: 7 March 2022 and 2 September 2022

e 160GB of data stolen by LapsusS hacking group and
published in March, Including Galaxy source code
containing over 6,000 secrets (API keys, passwords,
credentials)

e From July to August customer data was stolen

e No reporting of how many individuals were impacted,
nor details on how the threat actors gained access

@mcdwayne

=8

A Few Incidents
AstraZeneca

e Reported: 3 November 2022

e Developer hardcoded credentials and pushed to GitHub
In 2021, giving access to test environments

e "Usererror" caused an undisclosed amount of patient
data to be available in a test environment

e Credentials were exposed for over a year

@mcdwayne

@mcdwayne

Master Locksmiths Association (MLA)
7 Good security fail spotted by one of our members :-)

Code for
the door is

g C2597X

@mcdwayne

https://twitter.com/mla_locksmiths?lang=en

O oOoONOOLAEWNM

NNNNNNNNNNR B R e e
OO NOULEWNRERSISOOINDWLEWNRES®S

package main

import (
" fmtl'
llosll

)

func main() {
databaseName := "53CR3TD4T4B453"

secretKey := "S5UP3R53CR3T"
secretPhrase := "Always know where your towel is. - Douglas Adams, The Hitchhiker's Guide to the Galaxy"

var dbName string
var dbPass string

fmt.Println("Please enter database name:")
fmt.Scanf("%s", &dibName)

fmt.Println("Please enter database password:")
fmt.Scanf("%s", &dibPass)

if dbName == databaseName &5 dbPass == secretKey {
fmt.Println("wWelcome to the database!")
fmt.Println("Your secret phrase is: ", secretPhrase)
0s.Exit(0)

}

fmt.Println("Sorry, wrong database name or password")

@mcdwayne

In the 2022 edition of
The State of Secrets Sprawl

6M secrets found exposed
in 2021 in public GitHub repositories

More than 2X increase compared to 2 Million in 2020!

On average, 3 commits out of 1,000 exposed at least one secret

+50% compared to 2020

https://www.gitguardian.com/state-of-secrets-sprawl-report-2022
’ @mcdwayne

-8

Who Is Responsible?

@mcdwayne

Security Is Everyone's Job,
- At Every Step In The SDLC, =~
Not Just The Security Teams' Responsibility -

@mcdwayne

In the best organizations
developers outnumber

security team members 100:1
- Alex Rice, HackerOne
#Security@2022

AXEEXKKEX KKK X KK
AXKEXEXKKE XK KX KKK
%%%%%%%%%%%%%%

-8

Git Is At The Heart Of DevOps
And Is The Tool All* Devs Use

@mcdwayne

- Git Is Awesome!!!

- Git does not make code more or less secure

GIT(1) | Git Manual

NAME
git - the stupid content tracker

@mcdwayne

Git does give us a
way to exclude
entire types of fi les
or directories...

- .gitignore -

°

*. gem
*.rbc

/.config
/coverage/
/InstalledFiles
/pkg/
/spec/reports/
/spec/examples. txt
/test/tmp/
/test/version_tmp/
/tmp/

Used by dotenv library to load environment variables.

.env

Ignore Byebug command history file.

.byebug_history

Specific to RubyMotion:
.datx

.repl_history

build/

*.bridgesupport
build-iPhone0S/
build-iPhoneSimulator/

@mcdwayne

Usmg 3 g|t|gnore flle can make sure you do
not commit a secrets.json, an.aws-directory
or wherever you store API keys, usernames

and passwords, or security certificates**

GITIGNORE(5) Git Manual

NAME
gitignore - Specifies intentionally untracked files to ignore

° ' - c ! @mcdwayne

Combine .gitignore with secrets managers
like Hashicorp Vault or Azure Key Vault and
you have eliminated hardcoded secrets
leaks...

HashiCorp

Vault

@mcdwayne

~* In a perfect world, that would be :
the end of the talk. ' .

o o o L] ° L] o o o L] o
° ° 1 package main .
2
>
3 import (
L J L] 4 llfntll
S Olosll
L] G
6)
° Q ® ° 7 o @
8 func main() {
9 databaseName := "53CR3TD4T4B453"
However: o st e s
LA 11 secretPhrase := "Always know where your towel is. - Douglas Adams, The Hitchhiker's Guide to the Galaxy"
® 12
° 13 var dbName string ®
14 var dbPass string

°
Pl o
o wm

fmt.Println("Please enter database name:")
fmt.Scanf("%s", &dbName)

°
e
o

5. 19 fmt.Println("Please enter database password:")
20 fmt.Scanf("%s", &dibPass)
21 °
22 if dbName == databaseName && dbPass == secretKey {
23 fmt.Printn("Welcome to the database!") .
° @ 24 fmt.Println("Your secret phrase is: ", secretPhrase)
25 0s.Exit(0)
® 26 }
4y 27 fmt.Println("Sorry, wrong database name or password")
28 }
29 L]

o . o : . : R

-8

The issue is not that you tested a secret.

The issue is you forgot to remove it from your
code before you committed and pushed.

6 vn |
INSTR € |
i

YOUREGONNA HAVERIBADJTIME

@mcdwayne

You can (in theory)
remove secrets

from a shared repo, but
it Is not easy

It's dOwnright paihful v

"Are you sure you got it out from all the commits and branches?"

@mcdwayne

-8

What we need is
some sort of
automation that

us from
committing our
secrets...

@mcdwayne

Git provides a way....
Git Hooks

Name
AirDrop
COMMIT_EDITMSG
@ Recents
A Applications config

(=) Desktop description

(3 Documents
HEAD

@® Downloads
Jan 6, 2022 at 8:07 AM Jan 6, 2022 at 8:07 AM Folder

D Creative Clo...

index

& iCloud Drive info

£ Shared
logs
& Network i

refs

@mcdwayne

=8

Self-Operating Napkin

You do a thing, Git triggers a script

@mcdwayne

There are 17 available hooks

“Every Git repository has a
.git’/hooks folder with a script
for each hook you can bind to.
You're free to change or
update these scripts as
necessary, and Git will execute
them when those events
occur.” - Matthew Hudson
https://GitHooks.com

o pre-applypatch

o pre-commit

o commit-msg
o post-commit

o pre-rebase

o pre-receive
o update

o post-receive
o post-update
o pre-auto-gc

o post-rewrite

o pre-push

o applypatch-msg

These 3 hooks
e— trigger before a

o post-applypatch

o prepare-commit-msg g}

e COMmMit
happens

o post-checkout

o post-merge

e This one triggers
before the remote
accepts the
changes

@mcdwayne

https://githooks.com/
https://githooks.com

Git comes with sample hooks . .

#!/bin/sh

v gt 1
book 2 #
v
:) 3 # An example hook script to verify what is about to be committed.
: £ applypatch-msg.sample 4 # Called by "git commit" with no arguments. The hook should
) = commit-msg.sample) # exit with non-zero status after issuing an appropriate message if
= ; 6 # it wants to stop the commit.
= fsmonitor-watchman.sample o
= post-update.sample 8 # To enable this hook, rename this file to "pre-commit".
= pre-applypatch.sample) .
$ pre-commit.sample 10 if git rev-parse ——verify HEAD >/dev/null 2>&1
e — 11 then
= pre—merge-commlt.sample 12 against=HEAD
= pre-push.sample 13 else
= pre-rebase.sample | (14 # Initial commit: diff against an empty tree object .
. 15 against=$(git hash-object -t tree /dev/null)
= pre-recelve.sample 16 i

= prepare-commit-msg.sample
= push-to-checkout.sample

= update.sample . - o o o

J' Lo " ! @mcdwayne

If you can script it, you can automate it.

git-venture > .git > hooks > $§ commit-msg

1 #!/usr/bin/env bash
curl https://icanhazdadjoke.com

2
3 echo ""
4

PROBLEMS (1 OUTPUT TERMINAL DEBUG CONSOLE

Documents/git-venture $ git add .
Documents/git-venture $ git commit -m 'readme update spelling

) \hy did the teddy bear say “no” to dessert? Because she was stuffed
[security da33e2al readme update spelling
1 file changed, 2 insertions(+), 1 deletion(-)

Documents/git-venture $ [

- The built-in scripts are mostly shell (sh) scripts, but you can-
use ANY scripting language (JavaScript, PHP, Python, Ruby
Perl, Bash, etc), - -
. @mcdwayne

J

An ideal solution would look like:

Before | commit,
Something should check my code for any hardcoded:

- Usernames & Passwords

- API Keys
- Security Certificates
- Any other defined patterns

-»

~

any of those are detected, throw
an error and-do not make the commit.

@mcdwayne

Let's just use git-grep - | |

to look for patterns!

git-venture > .git > hooks > $ commit-msg

1

LCoOoNOOULASEWN

.
= ®

12

#!/usr/bin/env bash e
curl https://icanhazdadjoke.com DA RS -
echo "" 5 password = exAmplepassWORD
if git grep -E "password = %" | git grep —-E "password=x" ; then 6 password =
echo "NO HARDCODE PASSWORD" 7 Pas sSwo rd=skskkkk
exit 2 8 More test...
fi 9

10 Keyl= AKIAIOSFODNN7HELLOWEKEY

if git grep -E "[A-Z0-91{20}"; then ST

fi

11 Key2 = wlalrXUtnFEMI/K7MDENG/bPxRfiCYHELLOWEKEY

echo "NO HARDCODE KEYS"
exit 2

° ° °

Documents/git-venture $ git add .)

Documents/ﬁit-venture $ git conmit -m 'readme spacing update'

What did the left eye say to the right eye? Between us, something smells!

README : password=exAmplepassWORD

README : password =

README : pas sword=**¥¥¥%

NO HARDCODE PASSWORD .
Documents/git-venture $ |}

“ -

@mcdwayne

The issues then become...

We have to manually build and maintain this.
False positives!

Need to account for “$API_ ENV VAR" is OK to use in
code.

Account for example passwords (like ‘th1si5@g00Denuff’).
Tell the difference between long strings and an access_key id or
secret_access_key.

Ensure you do not accidentally hard code keys in this scheme in case it gets
compromised.

Provide a way to add more-rules and patterns in a sane way.

Keep track of APIs updates.

Get your team to adopt your crazy hand rolled scripts.
Make this,more scalable .

And a bunch of other things you would discover along the way.

Etc, etc, etc.
Why are you still reading this? Go to the next slide already.

AIN'T
NOBODY
GOT

TIME
FOR THAT

@mcdwayne

-8

Open Source To The Rescue!

@mcdwayne

Multiple solutions exist to prevent
committing hardcoded secrets

e AWS-Labs/git-secrets
e TruffleHog
e ggshield (From Git Guardian)

Some solutions are built into other security tools
Many more smaller projects

@mcdwayne

AWS-La bs/git-seérets

git-secrets

¢ Prevents you from committing passwords and other sensitive information to
a git repository.

The following git hooks are installed:

1. pre-commit : Used to check if any of the files changed in the commit use prohibited patterns.
2. commit-msg : Used to determine if a commit message contains a prohibited patterns.

3. prepare-commit-msg : Used to determine if a merge commit will introduce a history that contains a
prohibited pattern at any point. Please note that this hook is only invoked for non fast-forward merges.

' ' @mcdwayne

AWS-Labs/git-secrets

- Free

Triple checks before a commit is made

- Can be extended

Relies on dev knowledge of regex and patterns
beyond AWS defaults

@mcdwayne

1.'ruferHog.‘

TruffleHog

°) Find leaked credentials.

e o

Precommit Hook

Trufflehog can be used in a precommit hook to prevent credentials from leaking before they ever leave your
computer. An example .pre-commit—config.yaml is provided (see pre-commit.com for installation).

repos:
— repo: local
hooks:
— id: trufflehog
name: TruffleHog
description: Detect secrets in your data.
entry: bash —c ‘trufflehog git file://. —only-verified ——fail'
. # For running trufflehog in docker, use the following entry instead:

entry: bash —-c 'docker run -v "$(pwd):/workdir" —-i ——rm trufflesecurity/trufflehog:latest g:
language: system
stages: ["commit", "push"]

@mcdwayne

trufflesecurity/trufflehog

- Free

- Checks at the pre-commit level

- Requires the pre-commit framework to be
installed as well

- Canrun as GitHub Action, catching after
secrets make it to remote, assumes GH use

- Reports of high false positives, ymmv

-8

@mcdwayne

GitGuardian/ggshield

ggshield: protect your secrets with GitGuardian

@ The global and local pre-commit hook

To install pre-commit globally (for all current and future repos), run the following command:

$ ggshield install —--mode global
You can also install the hook locally on desired repositories. You just need to go in the repository and execute:

$ ggshield install ——mode local -t "pre-push"

Install ggshield git pre-receive hook

@mcdwayne

GitGuardian/ggshield

-8

Requires a GitGuardian account

- Free for personal and OSS use
Can be installed at the pre-commit, pre-push,
and pre-receive hook levels
Checks against 350+ known patterns and can
be extended, but requires regex skill
Possible to hit API limits (1000 calls a month on
the free plan)

@mcdwayne

-8

What Does This Look Like In Action?

@mcdwayne

I configyml M X () README.md M $) o0 0 ¢

es to be committed:
!I' config.yml e "git restore ——staged <file>..." to unstage)

You, 18 seconds ago | 1 author (You) [?]g\gl:iés égzgag_ggshleld

aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfi no4ified: README.md

aws_secret_access_key = wlalrXUtnFEMI/K7MDENG/bPxRfi modified: config.yml
e ooens eaenes new file: wp-config-sample.php

1
2
3
4 enture ~ $git commit -m 'test’
secrets—-engine-version: 2.70.0

® x ® 1 incident has been found in file config.yml

>>> Incident 1(Secrets detection): Generic High Entropy Secret (Vali
dity: No Checker) (Ignore with SHA: e31b59cd45e66224391d92aef590c7f
986296ce46810702d107d6ed784d9f851) (2 occurrences)
2 | Key2 = AKIAIOSFODNNEXAMPLE

‘ o 3 | aws_secret_api = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

o o ~ 1 | aws_secret_access_key = wlalrkikkikkickokkiorkPXRT 1
apikey.

2 | aws_secret_access_key = wlalrekkickickckokookPXR T L
. [. A—|
3 |
4 |
GitGuardianEshield (D re=commat) e e e e e ayarorats

Throws an error and does not make a commit! -

e - " ! @mcdwayne

=8

In Conclusion

@mcdwayne

L] L o £l

Do NOT hardcode secrets. : =
Do NbT commit secrets om0 € e

Use automatlon 1 s s fo e e S Py

i3 var dbName string

14 var dbPass string
Leve rage Open source i: fmt.Println("Please enter database name:")

& 17 fmt.Scanf("%s", &dbName)

18
tools.to prevent you friom R

21

22 if dbName == databaseName && dbPass == secretKey {
pushing secrets 2 T e S

. 25 os.Exit(e)
;? :!lt.Println("Sorry, wrong database name or password")
@ ;g ¥
L] L]
L] @

@mcdwayne

Hi, ’m Dwayne

Dwayne McDaniel

| live in Chicago

I’ve been a Developer
Advocate since 2016

On Twitter @mcdwayne
Happy to chat about
anything, hit me up
Besides tech, | love improv,
karaoke and going to rock

and roll shows!

@mcdwayne

Stop Committing Your Secrets -
Git Hooks To The Rescue

Conf42: DevSecOps 2022
CONF42

@mcdwayne

-8

Questions?

Let's talk on Twitter @mcdwayne

www.gitguardian.com

@mcdwayne

