ENDOR
LABS

Going Beyond lNMetadata

Why We need To Think of Adapting Static Analysis in
Dependency Tools

{ Alll02 808852

NATL INST OF STANDARDS & TECH RC.
[
- A11102808852 oo
C.1NBS-P

6278057 O 500-155 1068 V19 C.1

ac
100
-Us7
#500-155

US GONERNMENT

Computer Science
and Technology

NBS Special Publication 500-155

Management Guide to
Software Reuse

William Wong

Back to 1980

Let’s first
understand the ideas
behind Software
Reuse

Wong, William. A management overview of software reuse. US Department
of Commerce, National Bureau of Standards, 1986.

/] Software Reuse: Ideas

5.1 Productivity

Reusing well-designed, well-developed, and well-documented
software improves productivity and |reduces| software development

time, | [costs,| and |risks.

5.2 Quality

Improvements in the quality of software developed from well-
designed|, |well-tested, and |well-documented| reusable software
components

Wong, William. A management overview of software reuse. US Department of Commerce, National Bureau of Standards,
1986.

/] Software Reuse:

Gateway to
thousands of
libraries and
frameworks

O

%) jhejderup — -bash — 68x20
Josephs-MBP:~ jhejderup$ npm help

Usage: npm <command>

where <command> is one of:
access, adduser, bin, bugs, c, cache, completion, config,
ddp, dedupe, deprecate, dist-tag, docs, doctor, edit,
explore, get, help, help-search, i, init, install,
install-test, it, link, list, 1n, login, logout, 1s,
outdated, owner, pack, ping, prefix, prune, publish, rb,
rebuild, repo, restart, root, run, run-script, s, se,
search, set, shrinkwrap, star, stars, start, stop, t,.team,
test, tst, un, uninstall, unpublish, unstar, up, update,.v,
version, view, whoami

<cmd> -h quick help on <cmd>

-1 display full usage info
help <term> search for help on <term>
help npm involved overview

Package Managers

Implementation

Dependency
management with
automated conflict

resolution

Centralized distribution

// Dependency Management

Problem #1: Local Level

DINY U
omp (0 [paCkage]
B ding 9 name = “webframework”
version = "4.16.3"
\J Y |
[i‘f;ﬁ‘;“ JogyTmareer] _ TODAY ...3 DAYS LATER
[dependencies]
= = ["~1.3.5" 1.3.7 1.3.12 |
P¥.18 .28
- - ={"~1.1.2" 1.1.3 1.1.3 |
K = "I.0. 2"
o @ =("~1.0.3" 1.0.6 1.0.9 |
R H - "1.5.17
< = ["~2.0.3" 2.0.5 2.0.5 |
Complex & Large Package Compositions Temporal Properties
5

http://www.modulecounts.com

http://www.modulecounts.com

// Dependency Management

Problem #2: Global/Repository Level

QZ Quartz

How one programmer broke the internet by deleting a tiny
piece of code

Lots of npm packages @ ZDNet

how this tiny bit of coc Hacker backdoors popular JavaScript library to steal
Mar 27, 2016 Bitcoin funds

The library loading the malicious code is named Event-Stream, a JavaScript y

/
SN P e T S N PR Bl P BSOSt Bl Py S5 \/

ST, SEESCRNSIT IS WES

B wRrep

A Second SolarWinds Hack Deepens Third-Party Software
Fears

It's been more than two months since revelations that alleged Russia-

backed hackers broke into the IT management firm SolarWinds and used ...
5 days ago

// Dependency Management

Temporal Properties => Version Pinning/Lock files
Everything Else => Dependency Analyzers/Bots/Plugins

r |3

A

\

* X X ¥ ¥ ¥

vulnerabilities
updates

audit

quality
deprecation
...more to come!

* alert fatigue
* actionability?
* precision?

N J
Y

// Revisit

5.1 Productivity

Reusing

well-designed,

software improves

time,

costs,

and

roductivity and

risks.

well-developed,

reduces

and well-documented
software development

P

Wong, William. A management overview of software reuse. US Department of Commerce, National Bureau of Standards,

1986.

// Classic Alert Fatigue? Nope

We need first address the quality of analyzers!

[package]
name = “webframework”
version = "4.16.3"
[dependencies] Rule #1: Metadata is not source code!
= "~1.3.5"
= "1.18.2"
= "~71.1.2"
= "1.0.2"
= "~1.0.3"]
~ v1.8.1" Declaration # usage
= "~2.0.3"

// Classic Alert Fatigue? Nope

We need first address the quality of analyzers!

- =
[stats_json(1) e [stats_json(l)e

[validate_json() e]

sysperf_log() e

[json_size(y) 9] [sysperf_log() e

[syslog_size() 9 [syslog_size()m
' baz() R

[_lli_)rip;endency] . _-> [Reachability Analysis]

Rule #2: Make Code first-class citizens

// Program Analysis

great, got it but expensive and not scalable, dependencies are many, right?

@ 4 35,896 raceges 23,76 7 paciages

o eme 208,023k 142,307 reesss
W .Q. Y Repository index & cllgraphs

10 67%

@ days (actually 80%)

Rule #3: Aim for Light-Weight Analysis Techniques!

// Program Analysis

* “Overkill for me to add Program Analysis”

* “What about Python/JavaScript?”

* “Program Analysis suffers from False Negatives,
my security customers won’t be happy about it”

~'C

// Program Analysis

Let’s settle the question through some research!

RQ: What is the difference in the number of
reported dependencies between traditional
metadata-based approaches vs program analysis
approaches?

12

10

// Number of Direct Dependencies

I cratesio
N docsrs
Bl praezi

The median is similar; the
mean relatively when comparing
the three representations.

A metadata-based direct deps slightly
over-approx. a static analysis inferred direct
deps!

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Feb
15 15 16 16 17 17 18 "18 19 '19 '20
Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

100

Number of transitive deps
(log)
o

// Number of Transitive Dependencies

[cratesio
[docsrs
I praezi

No close approximation
of each other!

Gap

Jun Dec Jun

15 '15

"16

Dec
16

Jun
17

Dec
T

Jun
18

Dec
18

Jun
19

Dec
19

Feb
'20

Mean: packages are indirectly
not calling 60% of its
resolved transitive
dependencies

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

3 // Why is there such a large difference for transitive depz?

diff metadata-based call-based dependency tree
in 34 randomly selected cases

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

3 // Why is there such a large difference for transitive depz?

Diff #1

* 3 x No import statements
* 4 x Import statements but no usage

Not totally unexpected but also not that common!

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

3 // Why is there such a large difference for transitive depz?

Diff #2

* 1 x conditional compilation (e.g., [#cfg(...)])
* 2 x derive macro libraries (code generation)
* 1 x test dependency (in wrong section!)

Not all dependencies are runtime libraries!
Optional dependencies surface and enabled in code; how do we handle them?

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

3 // Why is there such a large difference for transitive depz?

Diff #3

* 16 X non-reachable transitive dependencies!

What do you mean?

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Prazi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

// How many dependencies is App v1.0 using?

«calls»

Lib 3 Lib 2
v1.2 v0.2

/] Context Matters!

«calls»

T ()

Lib 3 Lib 2
v1.2 v0.2

We make the general assumption that we use
- ALL APIs of all direct dependencies,
- and then ALL APIs of transitive dependencies

// Practical Implications - Trade-off

Analysis Scope - Direct Dependencies

* Declared dependency closely estimates a utilized dependency.
* Metadata > Static Analysis

Pros:
- No need to implement program analysis
- Higher recall for security/soundness-sensitive applications

Cons:

- Insensitive to simple things like no import statement &
specifics of APIs being utilized

- Cannot eliminate dependencies that are solely doing
code-generation (i.e, no actual runtime dependency)

// Practical Implications - Trade-off

Analysis Scope - Transitive Dependencies

* Static Analysis > Metadata

Pros:
- Capture the actual usage, reducing false positives.
- Higher actionability

Cons:

- False Negatives => May not be ideal for security
applications.

- Highly dynamic libraries are challenging to analyze

// Program Analysis: Precision & Recall

* Recall
- Coverage of language features
- Lost Precision, still better than metadata
* Precision
- Algorithms like Points-to algorithm not that scalable

* General Implications
- Scope of analysis: Project + its dependency tree
- Package repositories are not homogeneous collection of
libraries

+

+

Joseph Hejderup

josephaendor.ai

ENDOR
LABS

