
Going Beyond Metadata
Why We need To Think of Adapting Static Analysis in

Dependency Tools

Joseph Hejderup

Back to 1980

Wong, William. A management overview of software reuse. US Department
of Commerce, National Bureau of Standards, 1986.

Let’s first
understand the ideas

behind Software
Reuse

Wong, William. A management overview of software reuse. US Department of Commerce, National Bureau of Standards,
1986.

// Software Reuse: Ideas

Gateway to
thousands of
libraries and
frameworks

Centralized distribution

Dependency
management with
automated conflict

resolution

// Software Reuse: Implementation

Package Managers

5

// Dependency Management

webframework
4.16.3

accepts
1.3.8

body-parser
1.18.1 proxy-addr

2.0.5

…

…

…

T
r
a
n
s
i
t
i
v
e

d
e
p
z

accepts
2.8.0

1.3.7

1.1.3

1.0.6

2.0.5

 ...3 DAYS LATER

1.3.12

1.1.3

1.0.9

2.0.5

TODAY

[package]
name = “webframework”
version = "4.16.3"

[dependencies]
accepts = "~1.3.5"
body-parser = "1.18.2"
depd = "~1.1.2"
encodeurl = "1.0.2"
escape-html = "~1.0.3"
etag = "1.8.1"
proxy-addr = "~2.0.3"

Temporal Properties

Complex & Large Package Compositions

http://www.modulecounts.com

Problem #1: Local Level

http://www.modulecounts.com

// Dependency Management
Problem #2: Global/Repository Level

// Dependency Management
Temporal Properties => Version Pinning/Lock files
Everything Else => Dependency Analyzers/Bots/Plugins

* vulnerabilities
* updates
* audit
* quality
* deprecation
* ...more to come!

* alert fatigue
* actionability?
* precision?

Wong, William. A management overview of software reuse. US Department of Commerce, National Bureau of Standards,
1986.

8

// Revisit

// Classic Alert Fatigue? Nope
We need first address the quality of analyzers!

[package]
name = “webframework”
version = "4.16.3"

[dependencies]
accepts = "~1.3.5"
body-parser = "1.18.2"
depd = "~1.1.2"
encodeurl = "1.0.2"
escape-html = "~1.0.3"
etag = "1.8.1"
proxy-addr = "~2.0.3"

Rule #1: Metadata is not source code!

Declaration ≠ usage

// Classic Alert Fatigue? Nope
We need first address the quality of analyzers!

 v1.0.2

 v3.0.0 v1.5.2

 v2.5.1

main(y)

json_size(y)

validate_json()

baz()

foo(c)

stats_json(l)

sysperf_log()

syslog_size()

bar(y)

main(y)

baz()

stats_json(l)

sysperf_log()

syslog_size()

bar(y)

Call Graph Dependency
Tree

Reachability Analysis

Rule #2: Make Code first-class citizens

// Program Analysis
great, got it but expensive and not scalable, dependencies are many, right?

Rule #3: Aim for Light-Weight Analysis Techniques!

ktrianta/rust-callgraphs

23,767 Packages

142,301 Releases
call graphs

35,896 Packages

208,023 Releases
 Repository index

10
days

67%
(actually 80%)

// Program Analysis

* “Overkill for me to add Program Analysis”
* “What about Python/JavaScript?”
* “Program Analysis suffers from False Negatives,
 my security customers won’t be happy about it”

// Program Analysis
Let’s settle the question through some research!

RQ: What is the difference in the number of
reported dependencies between traditional
metadata-based approaches vs program analysis
approaches?

The median is similar; the
mean relatively when comparing
the three representations.

A metadata-based direct deps slightly
over-approx. a static analysis inferred direct
deps!

// Number of Direct Dependencies

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

Gap

 6

 17

No close approximation
of each other!

Mean: packages are indirectly

not calling 60% of its

resolved transitive

dependencies

// Number of Transitive Dependencies

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

// Why is there such a large difference for transitive depz?

diff metadata-based call-based dependency tree
in 34 randomly selected cases

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

// Why is there such a large difference for transitive depz?

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

* 3 x No import statements
* 4 x Import statements but no usage

Diff #1

Not totally unexpected but also not that common!

// Why is there such a large difference for transitive depz?

Diff #2

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

* 1 x conditional compilation (e.g., [#cfg(...)])
* 2 x derive macro libraries (code generation)
* 1 x test dependency (in wrong section!)

Not all dependencies are runtime libraries!
Optional dependencies surface and enabled in code; how do we handle them?

// Why is there such a large difference for transitive depz?

Diff #3

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

* 16 x non-reachable transitive dependencies!

What do you mean?

used()

Lib 3
v1.2

// How many dependencies is App v1.0 using?

used()

Lib 3
v1.2

// Context Matters!

We make the general assumption that we use
- ALL APIs of all direct dependencies,
- and then ALL APIs of transitive dependencies

// Practical Implications - Trade-off
Analysis Scope - Direct Dependencies

* Declared dependency closely estimates a utilized dependency.
* Metadata > Static Analysis

Pros:
- No need to implement program analysis
- Higher recall for security/soundness-sensitive applications

Cons:
- Insensitive to simple things like no import statement &

specifics of APIs being utilized
- Cannot eliminate dependencies that are solely doing

code-generation (i.e, no actual runtime dependency)

// Practical Implications - Trade-off
Analysis Scope - Transitive Dependencies

* Static Analysis > Metadata

Pros:
- Capture the actual usage, reducing false positives.
- Higher actionability

Cons:
- False Negatives => May not be ideal for security

applications.
- Highly dynamic libraries are challenging to analyze

* Recall
- Coverage of language features
- Lost Precision, still better than metadata

* Precision
- Algorithms like Points-to algorithm not that scalable

* General Implications
- Scope of analysis: Project + its dependency tree
- Package repositories are not homogeneous collection of

libraries

// Program Analysis: Precision & Recall

Joseph Hejderup
joseph@endor.ai

