
LEVEL UP YOUR CI/CD
WITH AWS SMART FEATURE
FLAGS

RAN ISENBERG, PRINCIPAL SOFTWARE ARCHITECT

INTRODUCTION

4

• Principal Software Architect @CyberArk

• AWS Community Builder

• Owner & Blogger @RanTheBuilder.Cloud

AGENDA

5

• Functional
• Non-functionalRequirements

• Static vs. Dynamic
Configuration

Types

• AWS AppConfig
• AWS Lambda Powertools smart feature flagsSolution

• All CI/CD stages
• A/B testing and canary deployment examplesBest Practices

REQUIREMENTS
Functional & Non-Functional

6

REQUIREMENTS

7

• Gradual deployment of features
• A/B testing

Deployment
Types

• Automatic rollback
• Disable features ASAPAct Quickly

• Supports Lambda functions/containers
• FedRamp High certificationAWS Solution

• Easy to use & integrate
• Self managed & resilientNon-Functional

8

“A CONFIGURATION IS A
COLLECTION OF SETTINGS THAT

INFLUENCE THE BEHAVIOR OF
YOUR APPLICATION”

Naïve Feature Flags Impl.

def my_func():

feature_flag: bool = evaluate_feature_flag()

if feature_flag:

handle_new_feature_logic()

else:

handle_regular_logic()

CONFIGURATION TYPES

10

1111

STATIC

12

DYNAMIC

• Service reads configuration from
bundled resources
• Change requires service CI/CD pipeline

redeployment
• Slow changes in service behavior
• Easier to manage

Static vs. Dynamic

• Service reads configuration from
an external source in runtime

• Changes require configuration
CI/CD pipeline

• Quick changes in service behavior
• Harder to manage, increased

complexity

SOLUTION

14

15

• Develop
• Configuration JSON file

• Store & Deploy
• AWS AppConfig
• Dedicated CI/CD Pipeline

• Evaluate
• AWS Lambda Powertools
• Feature Flags SDK

SOLUTION OVERVIEW

• JSON Configuration File

{

"premium_features": {

"default": false,

}

}

Develop

STORE & DEPLOY

17

18

AWS APPCONFIG CI/CD PIPELINE

19

• AWS service, no 3rd Party Integration
• FedRAMP High certified
• Fully managed (backups, high availability)
• Validate JSON schema
• Deployment strategies (canary deployment)
• Monitor & rollback (versions)

AWS APPCONFIG

20

APPLICATION

21

ENVIRONMENT

22

DEPLOYED CONFIGURATION

EVALUATE

23

AWS Lambda Powertools

• AWS Labs GitHub repository
• Over 1400 stars, Over 1 million downloads/month
• Defines best practices for AWS Lambda

AWS Lambda Powertools (Python)

• Fetch configuration from AppConfig, store in cache
• Evaluate feature flags value
• Regular & Smart feature flags rule engine
• Not just for Lambda functions

Feature Flags Utility

Sample Use Case – Regular Flags

25

{

”ten_percent_off_campaign": {

"default": true,

}

}

26

REGULAR FEATURE FLAG

27

• Simple rule engine SDK
• Evaluated in runtime
• Flags change value according to input context
• Generic context & action rich language
• A/B testing enabler

SMART FEATURE FLAGS

Sample Configuration

Input Event

JSON Conf ig

29

SMART FEATURE FLAGS

• EQUALS
• NOT_EQUALS
• KEY_GREATER_THAN_VALUE
• STARTSWITH
• KEY_IN_VALUE
• And many more

Actions

https://awslabs.github.io/aws-lambda-powertools-python/latest/utilities/feature_flags/

31

NON-BOOLEAN FEATURE FLAGS

32

• Enable a feature for a specific:
• Customer
• Users of a customer (admin etc.)

• Apply discount for specific types of products
• Offer free shipping if total cost is higher than X
• Endless possibilities

SAMPLE RULES

• Smart Feature Flags framework of A/B testing
• Different user experience for different users with a single

configuration

A/B Testing

33

34

• Change? Run configuration CI/CD
pipeline
• Cache expires -> behavior change

CACHE

COMING SOON

• Time based rules:
• Enable at specific time
• Enable for a specific duration
• Enable/disable during specific

days

35

FEATURE FLAGS BEST PRACTICES

36

• Ownership of dev team from start to end
• Plan config JSON rules
• Write code that evaluates it
• Disabled in production, enabled in dev/test accounts

Plan, Code & Build

37

• Mock configuration in local IDE tests
• Mock feature is disabled
• Assert feature handing code does NOT run

• Mock feature is enabled
• Assert feature handling code runs
• Side effects are valid

Test

38

• Once feature is stable in non-production environment
• Deployment strategy to production
• Canary (AppConfig.Canary10Percent20Minutes)
• All at once option

• Auto revert with CloudWatch alarms

Release & Deploy

39

• Error? Disable the feature flag ASAP
• Restart configuration CI/CD process
• Update tests - add missing use cases
• Deploy and re-release

• Conduct retro meeting
• Identify overlooked use cases in tests

Monitor & Operate

40

• Why?
• Reduce code complexity
• Easier to maintain
• Better visibility on overall flags

• How?
• Meeting once a month
• Remove & deploy configuration CI/CD pipeline

Retire

41

When?
• Feature enabled to 100% of customers for ‘X’ weeks.
• Feature is stable for ‘X’.
• Customer feedback is positive, and there are no open issues.
• The code surrounding the feature is not expected to undergo

any refactors/additions

Retire – Contd.

42

• We created feature flags (smart & regular)
• Deployed to AWS AppConfig
• Evaluated in runtime with AWS Lambda Powertools.
• We created canary deployments
• We conducted A/B testing
• We learnt feature flags best practices

Summary

43

@RANISENBERG

HTTPS://WWW.RANTHEBUILDER.CLOUD

THANK YOU!

@ISENBERGRAN

