
HOW TO FIT SEC INTO DEVOPS
WITHOUT SECURITY TEAM

Roman Zhukov
Product Security Lead

DISCLAIMER:

The opinions expressed are solely my
own and do not necessarily reflect the
official views or opinions of my
employer.

ABOUT ME
Roman Zhukov

12+ years in Information and Product Security

Product security expert: SDL, DevSecOps, Architecture

[former] Brought to market security products and services

[former] Help to secure large enterprise infrastructures

Security trainer at Universities

I am fond of Hiking, Volleyball, Running, Bikes

SOFTWARE @ INTEL

TOP 4 CONTRIBUTOR TO OPEN SOURCE
Open Source Contributor Index

https://opensourceindex.io/
https://opensourceindex.io/

MYTHS BREAKING

Security team
and their tools
are “aliens” for

R&D.

R&D has their
own KPI: product

ready or
security?

Has the yet
another

vulnerability
discovered?

Pfff… no one has
ever broken us

before.

Security doesn’t
contain good

metrics or clear
value. Could we

just complete
formal scans?

Security is boring
and unnoticeable

for everybody.

DEVSECOPS BENEFITS

Increasing TTM (Time-to-market)

Scaling

Flexibility

Transparency

Trust and brand appeal

2

3

1

4

5

DEVSECOPS. FLEXIBILITY

The community unexpectedly discovered a
critically vulnerable and extremely popular 3rd

party.

CASE
• Thanks to implemented Continuous

Security, we understand our components.
• We store logs for previous scans.
• 1 day for infra and product inventory.
• 2-3 days for the out of cycle release,

thanks to automation.

WITH DEVSECOPS:

Without DevSecOps:
• 3 day for inventory (are we affected?)
• 1 week for the out of cycle release, including

approvals, tests and scans.
• additional surprise: living for years 3rd party

dependences without updates.

THE MOST POPLAR SECURITY BUGS

State of Software Security, Veracode, February 2022

TOP 4:

✓ Buffer overflow/underflow

✓ Error and input handling

✓ Crypto implementation

✓ CRLF, XSS and SQLi (web)

https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-v12-nwm.pdf

DEVSECOPS AND SW SECURITY @INTEL

Intel® SDL
“Supply Chain Threats – Software” - White Paper, 2021
Matthew Areno, PhD, Intel Senior Principal Engineer
Antonio Martin, Intel Principal Engineer

https://www.intel.com/content/www/us/en/security/supply-chain-threat-whitepaper.html

AND THEN IT COMES… SECURITY…

AND THEN IT COMES… SECURITY…

I recommend primarily to focus on:
• SAST (5)
• SCA (6)
• Roles & Secrets (12)
• Vulnerability Scanning (15)
• +2 BONUSES☺

EXAMPLE: GITHUB

https://github.com/features/security

5 - Static Analysis - CodeQL 6 – Software Composition Analysis – DependaBot + RenovateBot

12 – Secret scanning - GitHub Secret scanning,
Role management – GitHub roles

15 – Vulnerability Scanning: Security overview – for issues in code,
External tools - for the end product

https://github.com/features/security

EXAMPLE: OPEN SOURCE AND FREE TOOLS*

5 - Static Analysis 6 – Software Composition Analysis

12 – Secret scanning 15 – Vulnerability Scanning for the end product

• SonarQube - free plan exists, dependent on language

• Bandit (not really SAST, but still helps) for Python

• RIPS for PHP

• SemGrep for C#, Go, Java, JavaScript, JSON, Python,
Ruby

• Snyk - free plan exists

• Dependency Track and Dependency
Check

• Debricked - free plan exists

• CVE-Bin-tool (by Intel)

• Gitguardian - free plan exists

• Gitleaks

• Whispers

• Detect-secrets

• Vault – for secret management

• OpenVAS

• Nmap with extentions

• ThreatMapper for outside-in scans

• Nuclei for web servers

• OWASP Zap for web

BONUS #1: CONTAINER AND K8S

What could possibly go wrong…
1. Select Images responsibly

✓ Use the image with minimum functionality and packages needed from scratch/distrolles/static/base/busybox (for OS base
images).

✓ Verify through Docker Bench, Clair, OpenSCAP and always check Cosign or Docker Content Trust signature.

✓ Apply latest patches and vendor’s hardening guides (please READ the Security section at manuals).

✓ Consider to establish the vetting procedure and local repo.

2. Utilize all best practices such as Official Docker security guides and OWASP Cheat Sheet when building
containers from Dockerfiles by your own

✓ Run scanning tools such as Hadolint, Dockle, Trivy or KubeLinter.

✓ Configure in rootless mode and avoid privileged Containers.

✓ Improve Container isolation and Restrict all sensitive actions like system calls.

3. Verify secrets are REALLY removed from any type of artifact: YAMLs, Container images, Layers and Helm
charts, Environment vars, Public Issues, Release Notes.

4. Consider Runtime security by applying all official Kubernetes Security guides, OpenShift Security guide,
Rancher Security guide, NSA/CISA K8s Hardening guide

✓ Implement Service Mesh concept (Istio) and leverage Policy engine (OPA – Open Policy Agent).

✓ Utilize container-native security tools: Calico (network), Falco (anomalies), Checkov (misconfigurations), Monitoring
(Prometheus, Kubescape, Kube-bench, Kube-hunter).

https://docs.docker.com/engine/security/
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://kubernetes.io/docs/concepts/security/
https://docs.openshift.com/container-platform/3.11/security/index.html
https://rancher.com/docs/rancher/v2.5/en/security/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/

BONUS#2: MAKE ALL ARTIFACTS TRUSTED

✓ Achieve SLSA Level 2 is not a big deal:

✓ Source - Version controlled

✓ Build - Scripted build and Build service

✓ Provenance – Available, Authenticated and Service generated

SLSA ("salsa") is Supply-chain Levels
for Software Artifacts

the supply chain is documented, there’s
infrastructure to generate provenance

the build environment is fully accounted for,
dependencies are tracked in provenance

and insider threats are ruled out.

Automate Provenance creation using SLSA GitHub Actions
and integrity check with In-Toto attestation tool. Use Cosign
for generating and verifying signatures.

https://github.com/slsa-framework/slsa
https://github.com/slsa-framework/slsa
https://github.com/slsa-framework/github-actions-demo
https://github.com/in-toto/attestation
https://github.com/sigstore/cosign

THANK YOU!

FACEBOOK.COM/R.O.ZHUKOV

ROZHUKOV.BLOGSPOT.COM

LINKEDIN.COM/IN/ROZHUKOV

Reach out to me:

