Reacting to an
Event-Driven World

CONF42

Grace Jansen

IBM Developer Advocate

@gracejansen2/

© 2021 IBM Corporation

Let’s get some coffee...

© 2020 IBM Corporation

https://github.com/cescoffier/quarkus-coffeeshop-demo

Barista Example:

Coffee Lovers m

Barista

HTTP
m %p

Coffee Shop

o %

© 2020 IBM Corporation

Event Driven Architecture

S1

Microservice
publishing
events

© 2020 IBM Corporation

Event-driven messaging backbone

Microservice
consuming
events

http://ibm.biz/AdvantagesOfEDA

http://ibm.biz/AdvantagesOfEDA

https://github.com/cescoffier/quarkus-coffeeshop-demo

Barista Example:

Coffee Shop
Coffee Shop

|
|
®_©O l g9
s%a y | 0a@® b
A < i; - SO o
offee Lovers oar
m i Coffee Lovers
Barista :
HTTP :
m i : Backbone e
; Ord \
MM
: Barista
i
|
1

© 2020 IBM Corporation

Apache Kafka is an open source, distributed

streaming platform
1=
HE

Stream history Immutable data Highly available

3 .

Scalable
consumption

Scalable

© 2020 IBM Corporation

Q: Is your coffee shop non-blocking
and highly responsive?

© 2020 IBM Corporation

‘ Q: Is your microservice system

non-blocking and highly responsive?

© 2020 IBM Corporation

‘ Q: Is your microservice system

non-blocking and highly responsive?

A: Yes I'm using Kafka! ‘

© 2020 IBM Corporation

‘ Q: Is your microservice system

non-blocking and highly responsive?

© 2020 IBM Corporation

Reactive systems

© 2020 IBM Corporation

Reactive Manifesto

© 2020 IBM Corporation

Reactive Manifesto

Message-Drive
n

© 2020 IBM Corporation

Messages Events

“An item of data sent to a specific “A signal emitted by a component upon
location.” reaching a given state.”

A message can contain an encoded event
in its payload.

© 2020 IBM Corporation

Apache Kafka is an open source, distributed

streaming platform

& Kafka

© 2020 IBM Corporation

Publish and subscribe to
streams of records

Store records in durable way

Process streams of records as
they occur

Barista Example:

Coffee Lovers

HTTP

Coffee Shop

© 2020 IBM Corporation

https://github.com/cescoffier/quarkus-coffeeshop-demo

gq S\ o

$9¢

Board

Event
Backbone

Barista

https://github.com/cescoffier/quarkus-coffeeshop-demo

Barista Example:

Coffee Lovers

HTTP

Event

Backbone .
W
Orders, \
m / Queue l7-

Barista

Coffee Shop

© 2020 IBM Corporation

https://github.com/cescoffier/quarkus-coffeeshop-demo

Coffee Lovers /
4 X

Barista Example:

HTTP Event
Backbone
Orders, \
EFV ducus ﬁ-
Barista

Coffee Shop

© 2020 IBM Corporation

Reactive Manifesto

-

© 2020 IBM Corporation

Barista Example:

© 2020 IBM Corporation

https://github.com/cescoffier/quarkus-coffeeshop-demo

-‘- TS TSNS TR S THR S TON S YRR { 11

TS TS S THR S THR'S T S S TR A 1

¢3¢

Py -
— 3L /
- Board

Coffee Lovers
Event
Backbone
/ Orders,
Queue

Coffee Shop

HTTP

Barista Example:

Coffee Lovers

\
i

Coffee Shop

HTTP

© 2020 IBM Corporation

https://github.com/cescoffier/quarkus-coffeeshop-demo

¢3¢

Board
5 ¢

Event

Backbone
Orders, \
Queue

ofe
v
[

Barista

https://github.com/cescoffier/quarkus-coffeeshop-demo

Barista Example:

¢3¢

Board
Coffee Lovers

LI ST
HTTP Event
Backbone .

Orders
Queue

Barista

Coffee Shop

© 2020 IBM Corporation

Reactive Manifesto

>

© 2020 IBM Corporation

Reactive Manifesto

Responsive

+

© 2020 IBM Corporation

Reactive Manifesto

Responsive

*

>

Message-Drive
n

© 2020 IBM Corporation

Building reactive
systems

© 2020 IBM Corporation

How do we make a highly responsive app?

Microservice 1 Microservice 3

‘ Microservice 2 |

© 2020 IBM Corporation

How do we make a highly responsive app?

Microservice 1

© 2020 IBM Corporation

Microservice 3

Microservice 2

| Reactive

Architecture
Patterns

Reactive Architecture design patterns

CQORS Circuit breaker Back pressure
WRITE API
APP

-—————

APP

I
|
|
|
|
|
|
|
|
|
|
|
|
|
\

How do we make a highly responsive app?

Microservice 1 Microservice 3

> Futures

A

= 4 Reactive Streams Reactive Streams

Libraries

mmm o LiDraries

Microservice 2

Reactive
Programming Futures

Reactive Streams

Libraries

© 2020 IBM Corporation

Reactive Programming

A subset of asynchronous programming and a paradigm where
the availability of new information drives the logic forward rather

than having control flow driven by a thread-of-execution.

© 2020 IBM Corporation

Reactive Programming Patterns

Futures: a promise to hold the result of some operation once that operation
completes

Reactive programming libraries: for composing asynchronous and
event-based programs. (e.g. RxJava, SmallRye Mutiny)

Reactive Streams: a programming concept for handling asynchronous data
streams in a non-blocking manner while providing backpressure to stream
publishers

© 2020 IBM Corporation

Utilising Kafka in
reactive systems

© 2020 IBM Corporation

Resiliency in Kafka

Responsive

+

>

Message-Drive
n

© 2020 IBM Corporation

Resiliency in Kafka

Responsive

+

>

Message-Drive
n

© 2020 IBM Corporation

Message Retention and Data
Persistence

Stream history Immutable Data

© 2020 IBM Corporation

Resilient Kafka Clusters

Broker 1 Broker 2 Broker 3

© 2020 IBM Corporation

Kafka Cluster

Resilient Kafka Clusters

© 2020 IBM Corporation

Topic A
Partition 1

1 Tupie n
: Partition 2
N IV'JI\» e I
! Partition 3 !
Broker 1 Broker 2 Broker 3
Kafka Cluster

Resilient Kafka Clusters

© 2021 IBM Corporation

Partition 1

Partition 1

Partition 1

Replica Replica Replica
Leader Follower Follower
| | I
Topic A E Topic A i E Topic A E

Broker 1

Broker 2

Broker 3

Kafka Cluster

Resilient Kafka Clusters

Replica
Offline

Topic .
Partition 1

Broker 1

© 2021 IBM Corporation

Replica Replica
Leader Follower
[|
Topic A E Topic A E
Partition 1 ' Partition 1 :
Broker 2 Broker 3
Kafka Cluster

Resilient Producers

Delivery guarantees:

At most once

At least once
Configuration:

Acks

Retries

© 2021 IBM Corporation

o

Broker 1

Broker 2

Broker 3

Resilient Consumers

© 2021 IBM Corporation

Baristas with auto commit

$9¢ $9¢ $3¢

Coffee Cappuccino Latte

Baristas with auto commit

$9¢ $9¢ $3¢

Coffee Cappuccino Latte

Baristas with auto commit

S5/ $%% ¢85

Coffee Cappuccino Latte

Baristas with auto commit

S5/ $%% ¢85

Coffee Cappuccino Latte

Baristas with auto commit

S5/ $%% ¢85

Coffee Cappuccino Latte

$%¢

W Cappuccino

4R

Barista

Baristas with auto commit

TRV AN TP A 1

Coffee Cappuccino Latte

4R

Barista

$9¢ 8¢

Cappuccino Latte

Baristas with auto commit Baristas with manual commit

55/ 95/ 858 4)

Coffee Cappuccino Latte Coffee Cappuccino Latte
\
TOPIC
4 .!
Barista Barista

$9¢ 8¢

Cappuccino Latte

Baristas with auto commit Baristas with manual commit

55/ 95/ 858 4)

Coffee Cappuccino Latte Coffee Cappuccino Latte
\
TOPIC
g W Coffee
Barista Barista

$9¢ 8¢

Cappuccino Latte

Baristas with auto commit Baristas with manual commit

85/ 95/ §5 R4)

Coffee Cappuccino Latte Coffee Cappuccino Latte
\
TOPIC
W W
Barista Barista

$9¢ 8¢

Cappuccino Latte Coffee

Baristas with auto commit Baristas with manual commit

95 95/ 858 ERVARRVARDN,

Coffee Cappuccino Latte Coffee Cappuccino Latte
\
TOPIC
W W
Barista Barista

$9¢ 8¢

Cappuccino Latte Coffee Cappuccino Latte

Scalability in Kafka

Responsive

+

>

Message-Drive
n

© 2021 IBM Corporation

Scalability in Kafka

© 2021 IBM Corporation

Topic A
Partition 1

Broker 1

——————————————————————

Topic A i
Partition 2 :

Broker 2

——————————————————————

1 1
i Topic A i
! Partition 3 :

Broker 3

Kafka Cluster

Elasticity in Consumers

Consumer Group . .

HEEEEEEN HEEEEEEN
HEEN 111
Broker 1 Broker 2 Broker 3

__

Kafka Cluster

© 2021 IBM Corporation

Consumer Groups

Consumer group A

Topic

Consumer

Consumer

Partition O O11,12|3|4|5|6|7

Consumer

Partition 1 011123

Consumer group B

Consumer

Partition 2 01112131415
Consumer

© 2021 IBM Corporation

Consumer Groups

Consumer group A

Topic
- J W pl, offset 3
Partition O O11,2|3|4 5|67

Partition 1 011123

Consumer group B

Consumer

Consumer

Partition 2 011123415 -

© 2021 IBM Corporation

Consumer Groups

Consumer group A

Topic
- J W pl, offset
Partition O O11,2|3|4 5|67

Partition 1 011123

Consumer group B

Consumer pO, offset

Partition 2 011,123 |4]|5 - pl, offset

Consumer 2, offset

© 2021 IBM Corporation

Consumer Groups

Consumer group A

Topic

pO, offset

- pl, offset
Partition O 0111213451617

p2, offset

L

Consumer

Partition 1 011123

Consumer group B

o
Partition 2 011,123 |4]|5 - pl, offset
Consumer

p2, offset

© 2021 IBM Corporation

, offset

Writing reactive
Kafka

applications

org.apache.kafka.clients.producer

Class KafkaProducer<K,V>

java.lang.Object
org.apache.kafka.clients.producer.KafkaProducer<K,V>

All Implemented Interfaces:

java.io.Closeable, java.lang.AutoCloseable, Prd

public class KafkaProducer<k,V>
extends java.lang.Object
implements Producer<K,V>

A Kafka client that publishes records to the Kafka cluster.
The producer is thread safe and sharing a single producer instai

Here is a simple example of using the producer to send records

Properties props =
props.put("bootstrap.servers",
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size",
props.put("linger.ms",

new Properties();
"localhost:9092

16384);
1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.
props.put("value.serializer", "org.apache.kafk

Producer<String, String> producer = new KafkaP

© 2021 IBM Corporation

org.apache.kafka.clients.consumer

Class KafkaConsumer<K,V>

java.lang.Object
org.apache.kafka.clients.consumer.KafkaConsumer<K,V>

All Implemented Interfaces:

java.io.Closeable, java.lang.AutoCloseable, Consumer<k,V>

public class KafkaConsumer<K,V>
extends java.lang.Object
implements Consumer<k,V>

A client that consumes records from a Kafka cluster.

This client transparently handles the failure of Kafka brokers, and transparently adapts as topic partitions it fetches migrate with
broker to allow groups of consumers to load balance consumption using consumer groups.

The consumer maintains TCP connections to the necessary brokers to fetch data. Failure to close the consumer after use will leaki
safe. See Multi-threaded Processing for more details.

Cross-Version Compatibility
This client can communicate with brokers that are version 0.10.0 or newer. Older or newer brokers may not support certain featu
offsetsForTimes, because this feature was added in version 0.10.1. You will receive an UnsupportedVersionException when

running broker version.

Offsets and Consumer Position

Reactive Frameworks for
Kafka

Alpakka Kafka Connector

MicroProfile Reactive Messaging

Vert.x Kafka Client

VERTX

Alpakka Kafka Connector API

“

Z Internal
7 State

Z

TAI SIS I I

£ Imaiibox |

© 2021 IBM Corporation

Eclipse MicroProfile

An open-source community specification for
Enterprise Java microservices

A community of:

e e MICROPROFILE

vendors

© 2021 IBM Corporation

MicroProfile 3.3 Stack MICROPROFILE.

Reactive

Messaging 1.0

Standalone Projects :

Context
Propagation
1.0

Not a MicroProfile spec

Open Tracing Health

1.3 Check 2.2 Metrics 2.3

JWT
Propagation Config1.4
1.1

Fault
Tolerance 2.1

Open API 1.1

Rest Client

JAX-RS 2.1 JSON-P 1.1 JSON-B 1.0 14

© 2021 IBM Corporation

MicroProfile Reactive Messaging

Application’s beans contain methods annotated with @Incoming and @Outgoing annotations

The annotated methods are connected by named channels

A channel is a name indicating which source or destination of messages is used. Channels are opaque
Strings.

@Incoming and @Outgoing annotations are matched up by channel names

@Incoming (“order”)
@Outgoing (“order”) @Outgoing (“status”) @Incoming (“status”)

Method A Method B Method C

Channel
status

Channel
order

© 2021 IBM Corporation

What is Eclipse Vert.x?

00O Fvents
O
Fvent Loop <.>
Polyglot Tool-kit N VERT
Based on Reactor pattern % o) N
Runs on the JVM — Thead

Non-blocking
Event-driven
Includes distributed event-bus

Code is single-threaded

© 2021 IBM Corporation

beooeooe € \ — | Configuration
Network events come L> Q

w)

Deploy v

from acceptor threads & ¢ Vertich
)PDOOOOOOO

b

&

<

Vert.x Demo App

© 2020 IBM Corporation

Demo app

produce

e

consume

Vert.x app

https://github.com/ibm-messaging/kafka-java-vertx-starter

© 2021 IBM Corporation

Demo app

IBM Event Streams
Starter Application
We've created this starter application in order to give you a starting point to produce

and consume messages to IBM Event Streams. Start the producer and see the
consumed messages appear.

Messages produced
to topic: test

produce

e

consume

websocket

12 el \ert.x app

Stop Producing

Newest

(]

Partition Partition on Partition
0 0 0
Offset Offset Offset
108 107 104

https://github.com/ibm-messaging/kafka-java-vertx-starter

© 2021 IBM Corporation

[ibm-messaging / kafka-java-vertx-starter ®Watch 5 Yrstar 17 % Fork 8

<> Code (1) Issues 2 1 Pull requests 1 (») Actions [l Projects () Security [~ Insights

¥ Branch: master ~ Go to file About

Starter Java app for testing

3 matthew-chirgwin committed 2ac005c 4 days ago -) 32 commits ¥ 7 branches ©1tag connection to Apache Kafka with
Vert.x
[0 .github fix: release workflow trigger 4 days ago
0 Readme
[docs feat: Add UI 18 days ago
&8 Apache-2.0 License
[m src feat: Add Ul 18 days ago
0 i build(deps): Bump carbon-components from 10.14.0 to 10.15.0... 6 days ago
Releases 1
[% .editorconfig feat: Simplify idioms 4 months ago
© Release 1.0.0
[% .gitignore feat: Add Ul 18 days ago 18 days ago
[CODE_OF CONDUCT.md fix: Update contributing guidelines 4 months ago
[CONTRIBUTING.md feat: Add Ul 18 days ago Contributors 6
[M LICENSE feat: Version 0.0.1 of the app 5 months ago 6 QL . 3 ‘

https://github.com/ibm-messaging/kafka-java-vertx-starter

© 2021 IBM Corporation

N

),
IBM Event Streams

Starter Application

We've created this starter application in order to give you a starting point to
produce and consume messages to IBM Event Streams. Start the producer and
see the consumed messages appear.

Messages produced Messages consumed
to topic: demo from topic: demo

Sample message value Start producing Start consuming

No messages produced No messages consumed
Produce messages to Kafka to see them here. Consume messages from Kafka to see them here.

© 2021 IBM Corporation

Producing Records

d
IBM Event Streams

Starter Application

We've created this starter application in order to give you a starting point to produce Sta rt
and consume messages to IBM Event Streams. Start the producer and see the

consumed messages appear.

Messages produced
to topic: test

12

Newest

(]

Partition Partition Partition
0
Offset
107

© 2021 IBM Corporation

Stop

websocket

Stop Producing

Partition Partition
0

Offset

105

Vert.x app

produce

—

Producing Records

String payload =
KafkaProducerRecord<String, Stri ord = KafkaProducerRecord.create(topic, payload)
KafkaProducer topic, payload)
public abstract Future<RecordMetadata> send(KafkaProducerRecord <String, String> record)
RAITR Touucer
d(record)
.onsuccess (metadat L
JsonObject kafkaMetaData = JsonObject()
.put(metadata.getTopic())
.put(metadata.getPartition())
. put(metadata.getOffset())

«put(metadata.getTimestamp())

.put(pavload)
.eventBus().send(Main. kafkaMetaData)
}
.onFailure(err —> {
.error(
.eventBus().send(Main. JsonObject().put(

© 2021 IBM Corporation

Consuming and Processing Records

Apache Kafka Java Client:

while (consuming) {
ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofMillis("1000"));
) ring, String> record : records) {
DemoConsumedMessage message = new DemoConsumedMessage(record.topic(), record.partition(),

record.offset(), record.value(), record.timestamp());
currentSession.getBasicRemote().sendObject(message);

© 2021 IBM Corporation

Consuming and Processing Records

Apache Kafka Java Client:

while (consuming) {
ring> records = kafkaConsumer.poll(Duration.ofMillis("1000"));
ring, String> record : records) {
 message = new DemoConsumedMessage(record.topic(), record.partition(),

record. offset(), record.value(), record.timestamp());
currentSession.getBasicRemote().sendObject(message);

© 2021 IBM Corporation

Consuming and Processing Records

Apache Kafka Java Client:

while (consuming) {
(merRecore ring> records = kafkaConsumer.poll(Duration.ofMillis("1000"));
ring, String> record : records) {

 message = new DemoConsumedMessage(record.topic(), record.partition(),

record. offset(), record.value(), record.timestamp());
currentSession.getBasicRemote().sendObject(message);

© 2021 IBM Corporation

Consuming and Processing Records

Vert.x Kafka Client

KafkaConsumer<String, JsonObject> kafkaConsumer = KafkaConsumer.create(vertx, kafkaConfig);
KatTkaConsumer.handler(record — {
JsonObject payload = new JsonObject()
.put("topic", record.topic())
.put("partition", record.partition())
(
(

.put("offset", record.offset())

.put("timestamp”, record.timestamp())

.put("value", record.value());
vertx.eventBus().send(webSocket.textHandlerID(), payload.encode());

¥);

© 2021 IBM Corporation

Consuming and Processing Records

Vert.x Kafka Client

KafkaConsumer<String, JsonObject> kafkaConsumer = KafkaConsumer.create(vertx, kafkaConfig);
kafkaConsumer.handler(record —> {
JsonObject payload = new JsonObject()
.put("topic", record.topic())
.put("partition", record.partition())
(
(

.put("offset", record.offset())

.put("timestamp”, record.timestamp())

.put("value", record.value());
vertx.eventBus().send(webSocket.textHandlerID(), payload.encode());

¥);

© 2021 IBM Corporation

Flow Control

Vert.x Kafka Client

webSocket.handler(buffer {
String action = buffer.toJsonObject().getString("action", "none");
if ("start".equals(action)) {
kafkaConsumer. resume(partition);

} else if ("stop".equals(action)) {
kafkaConsumer.pause(partition);

}
}):

© 2021 IBM Corporation

© 2021 IBM Corporation

Experiences writing a reactive Katka
application

Our journey to reactive - transforming a microservices Kafka application

By Grace Jansen, Kate Stanley
Published June 1, 2020

Apache Kafka is an extremely powerful tool for streaming large quantities of data and enabling
asynchronous, non-blocking communication within systems. However, when building
applications that use Kafka it can be hard to immediately test whether Kafka is working as it
should. To help make this process easier, we created a Kafka starter app designed to enable
you to test your Kafka deployment, with a fully functioning UL.

Ibm.biz/ExperiencesWritingAReactiveKafkaApp

Summary

Non-reactive + Kafka != reactive
Consider Kafka configuration for the best reactive system

The open-source reactive community is on hand to help!

Reactive toolkits and frameworks can provide additional
benefits

© 2021 IBM Corporation

MicroProfile Reactive labs

QuickLab

Module 1

Creating reactive Java
microservices

8 Try any time
=

QuickLab

Module 4
Integrating RESTful services

with a reactive system

B Try any time
-

© 2021 IBM Corporation

QuickLab

Module 2
Testing reactive Java
microservices

8 Try any time
=

QuickLab

Module 3

Consuming RESTful services
asynchronously with
template interfaces

8 Try any time
=

Ibm.biz/reactive-java-labs

Reactive Systems Explained

Ibm.biz/ReactiveReport

© 2021 IBM Corporation

Thank you

Grace Jansen | @gracejansen27

Reactive resources:
https://ibm.biz/IntroToReactive
https://ibm.biz/GettingStartedWithReactive

Getting started with Kafka:
https://kafka.apache.org/quickstart

https://strimzi.io

Reactive Kafka libraries

| R I R I SR TR AN [S TR [P of [P [B A |

