
Concurrency in Golang
For Beginners

Jayaganesh Kalyanasundaram
(Software Engineer-Site Reliability Engineering)

What did I first notice in Golang?

- var i int instead of int i; in C++
- func Job(i int) int {} instead of int Job(int i) {}

- := instead of = but everything else is the same as python
- structs are same as C++, slices are similar to python, interfaces can help mimic

classes, etc…
- Supports mutex and similar setup to semaphore (calls it WaitGroup)

tl;dr Golang == C++ in most parts including performance but with slightly easier
syntax like Python

Merge sort quick overview

Picture Courtesy: Wikipedia

https://en.wikipedia.org/wiki/Merge_sort

Merge sort in Golang

func Sort(arr []int) []int {
 if(len(arr) <= 1) {return arr}
 mid := len(arr)/2
 s1 := Sort(arr[:mid])
 s2 := Sort(arr[mid:])
 return merge.Merge(arr, s1, s2)
}

func Merge(arr []int, arr1 []int, arr2 []int) []int {
 size1 := len(arr1); size2 := len(arr2)
 i := 0; j := 0; index := 0
 for i < size1 && j < size2 {
 if arr1[i] < arr2[j] {
 update(arr, arr1, &index, &i) // update arr[index] with arr1[i]
 } else {
 update(arr, arr2, &index, &j) // update arr[index] with arr2[j]
 }
 }
 for i < size1 {
 update(arr, arr1, &index, &i) // update arr[index] with arr1[i]
 }
 for j < size2 {
 update(arr, arr2, &index, &j) // update arr[index] with arr2[j]
 }
 return arr
}

Wait, what else I came across?

- go keyword!
Ahha! I don’t need to manually define threads anymore

- chan???
What’s a channel? I’ve never heard of it? What does it do?

Well, why would anyone want to write threads and stuff? Servers would optimize
them anyway!

Merge sort with WaitGroup and go
func Sort(arr []int) []int {
 if(len(arr) <= 1) {return arr}

 mid := len(arr)/2
 var s1, s2 []int
 var wg sync.WaitGroup
 wg.Add(2)
 go func () {
 defer wg.Done()
 s1 = Sort(arr[:mid])
 } ()
 go func () {
 defer wg.Done()
 s2 = Sort(arr[mid:])
 } ()
 // The sorting of arr[mid:] & arr[:mid] are concurrent.
 wg.Wait()
 return merge.Merge(s1, s2)

}

What’s slowing it down?
func Sort(arr []int) []int {
 if(len(arr) <= 1) {return arr}

 mid := len(arr)/2
 var s1, s2 []int
 var wg sync.WaitGroup
 wg.Add(2)
 // Concurrency established
 go func () {
 defer wg.Done()
 s1 = Sort(arr[:mid])
 } ()
 go func () {
 defer wg.Done()
 s2 = Sort(arr[mid:])
 } ()
 // The sorting of arr[mid:] & arr[:mid] occurs Concurrently now.
 wg.Wait()
 return merge.Merge(s1, s2)

}

What’s slowing it down?

The merger is expecting 2 fully sorted arrays (/slices).

Is there any way to have a stream of data (than static data at once)?
Is there a way the merger can use them as and when the data are available?

Wait, what else I came across?

- go keyword!
Ahha! I don’t need to manually define threads anymore

- chan
What’s a channel? I’ve never heard of it? What does it do?

Well, why would anyone want to write threads and stuff? Servers would optimize
them anyway!

So what are Channels?

Picture Courtesy: Pneumatic tube Wikipedia

https://en.wikipedia.org/wiki/Pneumatic_tube

So what are Channels?

- Has a start (sender) and an end (receiver)
- Has a buffer to hold (could also be 0)
- If the receiver is not receiving then the sender will be blocked
- If the sender is not sending, the receiver will wait for eternity
- The sender can close the channel to state completion

Merge sort with Channels
func Sort(arr []int, ch chan int) {

 defer close(ch)
 if(len(arr) <= 1) {
 if(len(arr)==1) {
 ch <- arr[0]
 }
 return
 }
 mid := len(arr)/2
 s1 := make(chan int, mid)
 s2 := make(chan int, len(arr) - mid)
 // Concurrency established
 go Sort(arr[:mid], s1)
 go Sort(arr[mid:], s2)
 // Merging happens simultaneously and is not blocked on individual sorting.
 merge.Merge(s1, s2, ch)

}

So what are Channels, again?

Journey: From sequential sorting with blocking merge to concurrent sorting
with blocking merge to concurrent sorting with non-blocking merge

Transfer data directly than using shared memory with lock contention

“Don’t communicate by sharing memory, share memory by communicating”
-- Courtesy Share Memory By Communicating - The Go Blog

https://blog.golang.org/codelab-share

Where did I use it practically?

One of our internal tools:

- Had a frontend which was surfacing a CLI
- Had multiple backends which communicated with the

frontend
- Each interaction took ~few minutes

- Frontend and backends were run as a single binary
- The user wanted to know the progress of the CLI

Problem:
How do we report the intermediate progress before the
function call returns?

Where did I use it practically?

- Every backend opens a channel with the
frontend

- Populates the progress in that channel as
and when some milestones are reached

- The frontend ingests the data from all
channels and sends them to the user
appropriately

Benefits: no extra overhead with logging, etc.

Thankyou :)

