
Go Big With
Apache Kafka

Lorna Mitchell, Aiven

Smiling! Developer Advocate at Aiven, we do interesting data platforms in the cloud

Plan: Intro to Kafka, how to Go with Kakfa, schemas and Avro, AsyncAPI intro

Apache Kafka
"Apache Kafka is an open-source distributed event
streaming platform" - https://kafka.apache.org

•Designed for data streaming

•Real-time data for finance and industry

•Very scalable to handle large datasets

@lornajane

https://kafka.apache.org
Massively scalable pubsub mechanism. But essentially a dumb wire, does not care about data. Max 1MB

Widely used in event-sourcing, data processing applications. Also used for metrics, log shipping

Modern, scalable, and fast remind you of
anything?

@lornajane

Go and Kafka are a really good combination

Kafka is a Log
We know about logs
• append-only

• immutable

Producers send data.
Consumers fetch it.

@lornajane

Topics and Partitions
• Topic is sharded across

partitions

• Partition defined by key
(usually)

•One consumer per
consumer group per
topic partition

@lornajane

Topics would be tables in a database. They might be login events, or click events, or sensor readings

Order is preserved

Partitions help get related messages processed in order. Usually this is done by key

Consumer Groups
•Different apps can read

the same data

•Consumers belong to a
"consumer group"

•One consumer per
consumer group per
topic partition

@lornajane

One consumer per topic PER CONSUMER GROUP so different applications can consume the same data for their own purposes (e.g. C2, C3 on the diagram)

Replication Factors
•A topic has a "replication factor", this is how many

copies of it will exist.

•Replication works at the partition level.

@lornajane

Replication is a high availability thing. The more precious your data, the more replicas you should have. Usually most of them are just hanging around, replicating

Let's Go
https://github.com/aiven/thingum-industries/

https://github.com/aiven/thingum-industries/
I'm going to show you the Go stuff next, here's a QR code for the repo with all the examples in it. There are python examples too because ... why not?

Kafka is an ideal decoupling point, it's tech-agnostic and you can have lots of different producers and consumers with different tech stacks

Let's Go
Three libraries in today's examples:

• confluentinc/confluent-kafka-go
• riferrei/srclient
• actgardner/gogen-avro

@lornajane

Definitely not covering all libraries. Shout out to Sarama from Shopify, is also great (historically missed something so I used the Confluent one)

Example: Factory Sensors
Imaginary IoT application "Thingum Industries"

Which machine? What reading?
{
 "machine": "MagicMaker3000",
 "sensor": "oven_temp",
 "value": 231,
 "units": "C"
}

@lornajane

Example: Producer
Connect to the broker
 1 p, err := kafka.NewProducer(&kafka.ConfigMap{
 2 "bootstrap.servers": os.Getenv("BROKER_URI"),
 3 "security.protocol": "SSL",
 4 "ssl.ca.location": "../ca.pem",
 5 "ssl.certificate.location": "../service.cert",
 6 "ssl.key.location": "../service.key",
 7 })
 8 if err != nil {
 9 panic(err)
10 }
11 defer p.Close()

@lornajane

Example: Producer
Send a record to a topic
 1 mySensorReading := avro.MachineSensor{
 2 Machine: "MagicMaker4000",
 3 Sensor: "oven_temp",
 4 Value: (100*rand.Float32() + 150),
 5 Units: "C",
 6 }
 7 reading, _ := json.Marshal(mySensorReading)
 8
 9 p.Produce(&kafka.Message{
10 TopicPartition: kafka.TopicPartition{
11 Topic: &topic, Partition: kafka.PartitionAny},
12 Value: reading}, nil)

@lornajane

More on that avro module and the struct in a minute ... it's just a struct

We've produced messages to a Kafka topic, well done everyone! We can consume them the same way but I'd like to share some other tools with you too...

Example: Consumer
Read from a topic
 1 c, err := kafka.NewConsumer(&kafka.ConfigMap{
 2 "bootstrap.servers": os.Getenv("BROKER_URI"),
 3 "group.id": "CG1",
 4 "auto.offset.reset": "earliest",
 5 })
 6 c.SubscribeTopics([]string{topic}, nil)
 7
 8 for {
 9 msg, _ := c.ReadMessage(-1)
10 fmt.Printf("Message on %s: %s\n", msg.TopicPartition, string(msg.Value))
11 }
12
13 c.Close()

@lornajane

I ripped out the SSL options to get it to fit! Use the repo version

Kafka Tooling
Kafka itself ships with some useful shell scripts

Kafkacat: CLI Tool
https://github.com/edenhill/kafkacat

@lornajane

https://github.com/edenhill/kafkacat

Kafdrop: Web UI
https://github.com/obsidiandynamics/kafdrop

@lornajane

https://github.com/obsidiandynamics/kafdrop

Cloud Hosted Tools

@lornajane

Your friendly cloud hosting platform may also have options :)

Kafka and Schemas

Schemas
Schemas are great!
• specify and enforce data format

• required by compression formats, e.g. Protobuf, Avro

Our favourite strongly-typed language really likes
schemas

@lornajane

Avro Schemas
•Avro format requires a schema

•message has schema version information

• used to look up fieldnames and reconstruct
payload

• Schema Registry holds the schema versions for each
topic

@lornajane

Enforced structure gives good sanity/guarantees

Field names are looked up from schema, not repeated over and over in every record

Producers and consumers communicate with the schema registry - in my example that's Karapace

Evolving Schemas
•Aim for backwards-compatible changes

• to rename: add the new field, keep the old one

• safe to add optional fields

• Each change is a new version

•Avro supports aliases and default values

@lornajane

Each message knows which schema version it was created with, schema registries understand versions

Avro doesn't support skipping fields, use null for those fields, or send a default value

In the event of emergency, create a new topic name for a new format of message. E.g. sensors.tanks.0

Example: Avro Schema
Avro schema example for sensor data

{
 "namespace": "io.aiven.example",
 "type": "record",
 "name": "MachineSensor",
 "fields": [
 {"name": "machine", "type": "string",
 "doc": "The machine whose sensor this is"},
 {"name": "sensor", "type": "string", "doc": "Which sensor was read"},
 {"name": "value", "type": "float", "doc": "Sensor reading"},
 {"name": "units", "type": "string", "doc": "Measurement units"}
]
}

@lornajane

Invalid data gets rejected, ensure contract

Enumerate fields, we will see them again later

GoGen makes Avro Structs
gogen-avro avro machine_sensor.avsc

type MachineSensor struct {
 // The machine whose sensor this is
 Machine string `json:"machine"`
 // Which sensor was read
 Sensor string `json:"sensor"`
 // Sensor reading
 Value float32 `json:"value"`
 // Measurement units
 Units string `json:"units"`
}

@lornajane

For this strongly typed language, this just gives you a ready made struct to throw data at and pass onwards.

Example: Avro Producer
Add awareness of the schema registry, and turn the
struct into bytes to add into the payload...
 1 schemaRegistryClient := srclient.CreateSchemaRegistryClient(uri)
 2 schema, err := schemaRegistryClient.GetLatestSchema(topic, false)
 3
 4 mySensorReading := avro.MachineSensor{
 5 Machine: "MagicMaker4000",
 6 Sensor: "oven_temp",
 7 Value: (100*rand.Float32() + 150),
 8 Units: "C",}
 9
10 var valueBytesBuffer bytes.Buffer
11 mySensorReading.Serialize(&valueBytesBuffer)
12 valueBytes := valueBytesBuffer.Bytes()

@lornajane

Example: Avro Producer
... then add the schema info, assemble and send.
 1 schemaIDBytes := make([]byte, 4)
 2 binary.BigEndian.PutUint32(schemaIDBytes, uint32(schema.ID()))
 3
 4 var recordValue []byte
 5 recordValue = append(recordValue, byte(0))
 6 recordValue = append(recordValue, schemaIDBytes...)
 7 recordValue = append(recordValue, valueBytes...)
 8
 9 p.Produce(&kafka.Message{
10 TopicPartition: kafka.TopicPartition{
11 Topic: &topic, Partition: kafka.PartitionAny},
12 Value: recordValue}, nil)

@lornajane

Describing Payloads

Machine friendly: Schemas enforce structure.

Human friendly: Reference docs for what is expected.

AsyncAPI for Apache Kafka
AsyncAPI describes event-driven architectures
https://www.asyncapi.com

We can describe the:
• brokers and auth

• topics

• payloads

@lornajane

(is Dale's talk before or after mine? Send everyone there)

https://www.asyncapi.com
AsyncAPI is a sister to OpenAPI - today you are wearing your kafka hats but probably you do APIs too!

It supports reusable components, and can also reference your other-format schemas, such as Avro, or CloudEvents.

From the description, you can generate docs, code, integrations

Describing Payloads
The channels section of the AsyncAPI document
 factorysensor:
 subscribe:
 operationId: MachineSensor
 summary: Data from the in-machine sensors
 bindings:
 kafka:
 clientId:
 type: string
 message:
 name: sensor-reading
 title: Sensor Reading
 schemaFormat: "application/vnd.apache.avro;version=1.9.0"
 payload:
 $ref: machine_sensor.avsc

@lornajane

Magic is in the last line

You can also add examples! Worth a thousand words. Didn't fit on slide, see repo.

Documenting Payloads

@lornajane

Reference docs, great return on tiny investment! Like code comments, but different

Go with Apache Kafka

Perfect fit alongside our super scalable and performant tech stack. Anything where the data flows between components, especially if it's event-ish and/or at scale. Most common in banking and manufacturing but plenty of other places too. Hopefully given you an intro :)

Resources
•Repo: https://github.com/aiven/thingum-industries

•Aiven: https://aiven.io (free trial!)

•Karapace: https://karapace.io

•AsyncAPI: https://asyncapi.com

•Me: https://lornajane.net

@lornajane

https://github.com/aiven/thingum-industries
https://aiven.io
https://karapace.io
https://asyncapi.com
https://lornajane.net

	Apache Kafka
	Kafka is a Log
	Topics and Partitions
	Consumer Groups
	Replication Factors
	Let's Go
	Let's Go
	Example: Factory Sensors
	Example: Producer
	Example: Producer
	Example: Consumer
	Kafka Tooling
	Kafkacat: CLI Tool
	Kafdrop: Web UI
	Cloud Hosted Tools
	Kafka and Schemas
	Schemas
	Avro Schemas
	Evolving Schemas
	Example: Avro Schema
	GoGen makes Avro Structs
	Example: Avro Producer
	Example: Avro Producer
	Describing Payloads
	AsyncAPI for Apache Kafka
	Describing Payloads
	Documenting Payloads
	Go with Apache Kafka
	Resources

