How we accidentally created a Cloud on
our Cloud

Mofizur Rahman
Developer Advocate, IBM

Do Container Stuff,
Collect Stickers,
Write go code

@moricodes

What 1s Cloud

e Someone else’s computer
e On Demand
e Has way for users to access the service

@moficodes

The Problem

The Problem

Run average of 10-20 workshop a month. (2-4 a week)

Each workshop require avg of 30 K8s or OpenShift Cluster
Spinning up and spinning down cluster resources is manual
Cluster per subnet is limited

There 1s a soft limit on volume per datacenter

No clear way to collect workshop metzrics

The team that owns this process has 2 person

@moficodes

The Solution

Many ways to
skin this cat

Worst Solution

Worst Solution

e Spin up clusters in the UI
e Manually give access to users in console

e Do That for every user for every workshop for every
cluster

e Estimated time for the workshop lead + owner of the
account 4 hour per workshop

@moficodes

Impact

e On average 2 work days spent for the account owner

e Pretty much at the upper 1limit on how many workshop we
can support

e Huge cost center because resources needs to be created
earlier and deleted later (Weekends, time zones)

e No higher level workshop

@moficodes

Passable (Not
Bad) Solution

Passable Solution

Use the CLI in a bash script.

Update a config file for each workshop request
Use the same config file to delete the resouzrces
Use a github repo for tracking cluster requests
Simple webapp to handle workshop user access

@moficodes

Impact

e Significant improvement on previous solution

e The cluster access i1s now automated with the simple
webapp

e Still a manual process. But since its a script takes less
active time from dev advocates

e The actual workshop can scale to a fairly large number of
attendees since cluster allocation is automated

@moficodes

Current Solution

Current Solution

UI to select options (React)

APT to talk to infrastructure (All Go)
Some way (AWX) to spin up resources

Some way to clean up resources

Run post provisioning task on each cluster

@moficodes

What's Lacking

e¢ The UI is still a manual process. So weekend and time
zones are still a problem.

e No real metrics collection from the workshop itself.
e No way to schedule creation of deletion of resources.

@moficodes

Impact

e UI makes it easy to teach anyone to spin up resources
e We can add retry logic or rate limit to request

@moficodes

4 N

kubeadmin

kubeadmin, provisioner,
clustermanager, ui, notifier

AWX

L W

Ideal Solution

Tdeal Solution

e Automated workshop request from github to cluster
creation with approval in place

e Way to schedule creation and deletion of resources

e Open 1t up for other teams in org to run their resource
creation

e Have proper metrics for workshop run on these accounts

@moficodes

Impact

e Anyone within the org would be able to use this. No more
dependency on our small team.

e We would not need to spend cycle managing resouzrces

e (Cost saving with not running resources beyond what's
needed

e Take better decisions when new workshops and events are
considered.

@moficodes

AWX

User DB

=

Cluster Queue

“_________________l‘%%%‘%H%{%HHI |

[::EEEEEEEEE::]-~~

'|“%%%{{‘|Il-)

User Profile ‘
X

]

Cluster
>

<
Manager

Slack

Acquisition
Notifier

Event
Streams

Clusters
Scheduler g

Schedule DB

Self
Service

CLuster Count
(Time Sexries)

So why did we make a cloud?

e The features we needed are not needed by most people. It

would not make sense to implement that in the public
cloud interface.

e A cloud interface would be easier for us to use and scale
it even for an internal audience

@moficodes

Should you build your own cloud interface?

e Does the cloud you have does not have a easy way to do
what you need?

e Do you often find yourself writing custom code to do
things 1n your cloud?

e Does other teams do the same things?

e Do you struggle to keep the resources in check?

@moficodes

If the answer to
these questions
are yes...

Then maybe you
need to build a
interface to
yvour cloud.

@moficodes

But
Infrastructure
as Code First.

Infrastructure as Code

e (Cloud Automation (Terraform, Pulumi, Ansible, Chef,
Puppet)

e Deployment Automation (Ansible, Chef, Puppet, Pulumi)

e CI/CD (Github Actions, Travis, Jenkins, Harness, Argo,
Tekton)

@moficodes

Rolling out a custom
solution should be
towards the bottom of
your list.

Why should you consider building a cloud?

e Sometime reinventing the wheel is the best way

e A small script across different teams and orgs and needs
become a big dependency

e Most teams should not have to own cloud resources

e Interface of the cloud of your choice might not have all
the answers that you need

@moficodes

Considerations

e You can always do more. Do as much as necessary

e (Cloud has a lot of API and they can change be ready to
update things.

e Solving general cloud problem is probably going to be
more than you can take on. Solving your and your adjacent
teams problems are enough.

e Don’'t start with recreating cloud. Consider alternatives
first.

@moficodes

Mofizur Rahman
Developer Advocate, IBM

Do Container Stuff,
Collect Stickers,
Write go code

@moricodes

