aaaaaaaaaaa

CONF42

GOLANG

Securing Go APIs with
Decentralized Identity Tokens

l'l Magic
Mohammad Shahbaz Alam

Developer Advocate @ Magic

magic.link

@mdsbzalam

Agenda

User trust model of the Internet is broken.
What is Decentralized Identity Token?
Auth at Magic

Build Go API

Secure Go API with Magic

". Magic @mdsbzalam

Q User trust model of the Internet is broken.

1: Users think of secrets / passwords specific 2: Users entrust companies to store their 3: Users access the companies’ services by
to them to verify identity, and hand them off to secrets securely and responsibly. showing them the secret again which then
apps owned by various companies. gets matched with the stored secret.

Many companies roll their own authentication
59% of all users reuse their passwords across with no prior knowledge on security at all. Everytime the secret is shown, there’s a risk of
apps. exposing it to hackers.

Q User trust model of the Internet is broken.

4: Companies might get hacked, and lose user 5: Hacker uses stolen secrets to impersonate 6: This problem compounds now that there are
secrets, along with users’ trust. users to access their vital online services. many companies acting on behalf of users to
authenticate for them.

48% of customers never come back after Hackers use the same stolen secret to
breach. The Equifax breach has cost them at impersonate and access multiple apps, due to Users’ identity is no longer in their own hands
least $1.4B. password re-use. but controlled by a handful of large

corporations.

“» What people tried before Magic

Zero-knowledge authentication

Key-Based Model

~ Instead of users thinking of secrets themselves,
- blockchain-based public-private key-pairs are

randomly generated to access apps.

Pros:
° Users have complete control of their identity

° Companies can't know users’ secrets (more secure)

° Users can use the same secret to access apps - cleaner trust
model where there are no identity silos by companies

\ls

Cons:
° Users are likely to lose their keys, which will lock them out for
good and lose their online identity, or worse get them stolen
° The concept of using a key on the Internet is too unfamiliar for
most mainstream users (bad UX)

l'l Magic

¥ How Magic improved the trust so far

Delegated Key Management

Delegated Model

Magic leverages large laaS and secure user keys with
HSMs, with technology that hides and protects user
private keys from companies and even Magic.

[

| Additional Pros:

P ° Magic provides familiar passwordless auth UX to users for them
oy to retrieve their keys (better UX, can no longer lose keys)
o ® | ° Magic doesn’t store passwords and can’t know users’ keys /
< N ". S secrets (more security & trust)
L I. ° Native support for multiple blockchains
@' Additional Cons:

° Reliance on Single laaS

l'l Magic

What is DID Token?

lll Magic @mdsbzala m

Decentralized IDentity Token - DID Token

e DID Token created by the Magic, is adapted by prior tech like JWT and W3C'’s
DID Protocol.

e Itis encoded as a Base64 JSON string tuple representing [proof, claim]

e It leverages the Ethereum blockchain and elliptic curve cryptography

e To generate verifiable proofs of identity and authorization.
e These proofs are encoded in a lightweight, digital signature

e Which is shared between client and server

e to manage permissions; protect routes and resources, or authenticate users.

". Magic @mdsbzalam

Decentralized IDentity - DID

The DID token is encoded as a Base64 JSON string tuple representing [proof, claim] :

proof : A digital signature that proves the validity of the given claim .

claim : Unsigned data the user asserts. This should equal the proof after Elliptic Curve recovery.

const claim = JSON.stringify
const proof sign(claim

const DIDToken = btoa(JSON.stringify([proof, claim

l‘l Magic

https://web3js.readthedocs.io/en/v1.2.11/web3-eth-personal.html#sign

https://web3js.readthedocs.io/en/v1.2.11/web3-eth-personal.html#sign

Generating a DID Token (Pseudo-code)

const claim = JSON.stringify (A

iat:
exts
iss:
sub:
aud:
nbf:
tid:

Math.floor(Date.now() / 1000),
Math.floor(Date.now() / 1000) + lifespan,
“did:ethr:${user_public_address},
subject,

audience,

Math.floor(Date.now() / 1000),

uuid(),

ciatlm wiLtLn wne user S privale Key

const proof = sign(claim);

S

const DIDToken = btoa(JSON.stringify([proof, claim]));

Fncode

saner
ans

https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

Decentralized ID Token Specification

Key Description

iat Issued at timestamp (UTC in seconds).

ext Expiration timestamp (UTC in seconds).

nbf Not valid before timestamp (UTC in seconds).

- Issuer (the signer, the "user"). This field is represented as a Decentralized Identifier populated
SS
with the user's Ethereum public key.
5 The "subject” of the request. This field is populated with the user's Magic entity ID. Note: this
su
is separate from the user's Ethereum public key.

aud Identifies the project space. This field is populated with the application's Magic entity ID.

An encrypted signature of arbitrary, serialized data. The usage of this field is up to the
developer and use-case dependent. It's handy for validating information passed between
client and server. The raw data must already be known to the developer in order to recover the
token!

add

tid Unique token identifier. https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

Generating a DID Token with Magic

import { Magic } from 'magic-sdk';

const m = new Magic('API_KEY');

ol i
await m.auth.loginWithMagicLink({ email: 'hello@example.com' });
const DIDToken = await m.user.getldToken({ lifespan? = 900 });

} catch {

https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

Authentication & Authorization

lll Magic @mdsbzala m

https://dashboard.magic.link/ X -+

& dashboard.magic.link

l‘l Magic

'
\

0 (0

First App

{a} Home

& Users

¢ Branding
& Social Login

{33 Settings

Install Magic

Grab your key & follow the Get Started docs to add Magic to your app:

APIKEY SECRET KEY

pk_live B909595EACA450..] Reveal Secret &

Created: Fri May 28 2021 Roll Keys

Total funds 2

@mdsbzalam

Authentication (IoginWithMagicLink):

lorowser app

8. done logging in!
resolve sdk promise.

1. Login Request

\

2. Login Request

1 5. Click!

Alp.l.

4. Send magic link email
a, redirect

(op-ﬁom\l)

=

7. login done \

3. check every 2s
is login done?

Identity provider

l‘l Magic

(resolved by step 7)

(resolves poller in step 3)

Cﬁ'vomt' /

“browser pe;
Merw'ccwrexf ,

_ / /

https://docs.magic.link/client-sdk/web/api-reference#loginwithmagiclink

https://docs.magic.link/client-sdk/web/api-reference#loginwithmagiclink

Auth flow

User / Browser ‘ Client ‘ ‘ Server
POST /authenticate
passwordless
o
HTTP 200 OK
{ token: ...DIDT... }
=

l‘l Magic

GET /api/protected
Authorization: Bearer ...DIDT...

¢

HTTP 200 OK
{ authenticated: true }

Validate O
token - O

-—

Build Go API

Get started locally in seconds

Sound too good to be true? Take Magic for a spin. Bootstrap your project using a
simple CLI tool that generates a fully working application with Magic auth built-in.

Next.|s - Frontend

l'l Magic

npx make-magic --template next

‘!. Magic @mdsbzalam
@magic_labs

Resources

Frontend: https://github.com/shahbaz17/frontend-go-api

Go Server: https://github.com/shahbaz17/magic-go-api

Magic Go Admin SDK: https://docs.magic.link/admin-sdk/go/get-started

Decentralized ldentity: https://docs.magic.link/decentralized-id

DID: https://w3c-ccg.qgithub.io/did-primer

DID Token: https://docs.magqic.link/decentralized-id#what-is-a-did-token

Magic Docs: https://docs.magic.link

Magic Guides: https://magic.link/quides

Magic Community: https://community.magic.link

"' Magic @mdsbzalam
@magic_labs

https://github.com/shahbaz17/frontend-go-api
https://github.com/shahbaz17/magic-go-api
https://docs.magic.link/admin-sdk/go/get-started
https://docs.magic.link/decentralized-id
https://w3c-ccg.github.io/did-primer/
https://docs.magic.link/decentralized-id#what-is-a-did-token
https://docs.magic.link
https://magic.link/guides
https://community.magic.link

Connect with me

npx mdsbzalam
Twitter: @mdsbzalam

LinkedIn: https://www.linkedin.com/in/mdsbzalam

Youtube: https://www.youtube.com/c/mdsbzalam

Github: https://github.com/shahbaz17

Dev.to: https://dev.to/shahbaz17

Email: shahbaz@magic.link

Website: mdsbzalam.dev

"' Magic @mdsbzalam
@magic_labs

https://twitter.com/mdsbzalam
https://www.linkedin.com/in/mdsbzalam
https://www.youtube.com/c/mdsbzalam
https://github.com/shahbaz17
https://dev.to/shahbaz17

Thank you
CONF42

GOLANG

https://twitter.com/magic_labs

