
Securing Go APIs with
Decentralized Identity Tokens

Mohammad Shahbaz Alam - @mdsbzalam
@magic_labs

Mohammad Shahbaz Alam
Developer Advocate @ Magic

magic.link

@mdsbzalam

● User trust model of the Internet is broken.
● What is Decentralized Identity Token?
● Auth at Magic
● Build Go API
● Secure Go API with Magic

📜 Agenda

@mdsbzalam

 User trust model of the Internet is broken.

1 Users think of secrets / passwords specific
to them to verify identity, and hand them off to
apps owned by various companies.

59% of all users reuse their passwords across
apps.

2 Users entrust companies to store their
secrets securely and responsibly.

Many companies roll their own authentication
with no prior knowledge on security at all.

3 Users access the companies’ services by
showing them the secret again which then
gets matched with the stored secret.

Everytime the secret is shown, there’s a risk of
exposing it to hackers.

 User trust model of the Internet is broken.

4 Companies might get hacked, and lose user
secrets, along with users’ trust.

48% of customers never come back after
breach. The Equifax breach has cost them at
least $1.4B.

5 Hacker uses stolen secrets to impersonate
users to access their vital online services.

Hackers use the same stolen secret to
impersonate and access multiple apps, due to
password re-use.

6 This problem compounds now that there are
many companies acting on behalf of users to
authenticate for them.

Users’ identity is no longer in their own hands
but controlled by a handful of large
corporations.

Zero-knowledge authentication

Key-Based Model

Instead of users thinking of secrets themselves,
blockchain-based public-private key-pairs are
randomly generated to access apps.

Pros:
● Users have complete control of their identity
● Companies can’t know users’ secrets (more secure)
● Users can use the same secret to access apps - cleaner trust

model where there are no identity silos by companies

Cons:
● Users are likely to lose their keys, which will lock them out for

good and lose their online identity, or worse get them stolen
● The concept of using a key on the Internet is too unfamiliar for

most mainstream users (bad UX

🦖 What people tried before Magic

🔐 How Magic improved the trust so far

Delegated Model

Magic leverages large IaaS and secure user keys with
HSMs, with technology that hides and protects user
private keys from companies and even Magic.

Additional Pros:
● Magic provides familiar passwordless auth UX to users for them

to retrieve their keys (better UX, can no longer lose keys)
● Magic doesn’t store passwords and can’t know users’ keys /

secrets (more security & trust)
● Native support for multiple blockchains

Additional Cons:
● Reliance on Single IaaS

Delegated Key Management

What is DID Token?

@mdsbzalam

● DID Token created by the Magic, is adapted by prior tech like JWT and W3C’s
DID Protocol.

Decentralized IDentity Token - DID Token

● It is encoded as a Base64 JSON string tuple representing [proof, claim]

● It leverages the Ethereum blockchain and elliptic curve cryptography

● To generate verifiable proofs of identity and authorization.

● These proofs are encoded in a lightweight, digital signature

● Which is shared between client and server

● to manage permissions; protect routes and resources, or authenticate users.

@mdsbzalam

Decentralized IDentity - DID

https://web3js.readthedocs.io/en/v1.2.11/web3-eth-personal.html#sign

https://web3js.readthedocs.io/en/v1.2.11/web3-eth-personal.html#sign

Generating a DID Token Pseudo-code)

https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

Generating a DID Token with Magic

https://docs.magic.link/decentralized-id

https://docs.magic.link/decentralized-id

Authentication & Authorization

@mdsbzalam

@mdsbzalam

Authentication (loginWithMagicLink):

https://docs.magic.link/client-sdk/web/api-reference#loginwithmagiclink

https://docs.magic.link/client-sdk/web/api-reference#loginwithmagiclink

Auth flow

User / Browser Client

POST /authenticate
passwordless

HTTP 200 OK
{ token: ...DIDT… }

Server

GET /api/protected
Authorization: Bearer ...DIDT...

Validate
token

HTTP 200 OK
{ authenticated: true }

Build Go API

@mdsbzalam

@magic_labs

Next.js - Frontend

@mdsbzalam

@magic_labs

Frontend: https://github.com/shahbaz17/frontend-go-api

Go Server: https://github.com/shahbaz17/magic-go-api

Magic Go Admin SDK https://docs.magic.link/admin-sdk/go/get-started

Decentralized Identity: https://docs.magic.link/decentralized-id

DID https://w3c-ccg.github.io/did-primer

DID Token: https://docs.magic.link/decentralized-id#what-is-a-did-token

Magic Docs: https://docs.magic.link

Magic Guides: https://magic.link/guides

Magic Community: https://community.magic.link

Resources

@mdsbzalam

@magic_labs

https://github.com/shahbaz17/frontend-go-api
https://github.com/shahbaz17/magic-go-api
https://docs.magic.link/admin-sdk/go/get-started
https://docs.magic.link/decentralized-id
https://w3c-ccg.github.io/did-primer/
https://docs.magic.link/decentralized-id#what-is-a-did-token
https://docs.magic.link
https://magic.link/guides
https://community.magic.link

Connect with me

Twitter: @mdsbzalam

LinkedIn: https://www.linkedin.com/in/mdsbzalam

Youtube: https://www.youtube.com/c/mdsbzalam

Github: https://github.com/shahbaz17

Dev.to: https://dev.to/shahbaz17

Email: shahbaz@magic.link

@mdsbzalam

npx mdsbzalam

@magic_labs

Website: mdsbzalam.dev

https://twitter.com/mdsbzalam
https://www.linkedin.com/in/mdsbzalam
https://www.youtube.com/c/mdsbzalam
https://github.com/shahbaz17
https://dev.to/shahbaz17

Thank you

@magic_labs

https://twitter.com/magic_labs

