
Let’s Go Pulsar
Developing Cloud Native Apache Pulsar
Applications with Go

streamnative.io

● Apache Pulsar Committer

● Former Principal Software Engineer on Splunk’s internal Pulsar-
as-a-Service platform.

● Former Director of Solution Architecture at Streamlio.

● Global practice director of Professional Services at
Hortonworks.

David Kjerrumgaard
Developer Advocate

streamnative.io

● Author of Pulsar In Action.

● Co-Author of Practical Hive

David Kjerrumgaard
Author

https://streamnative.io/download/manning-ebook-apache-pulsar-in-action

Agenda
1. What is Apache Pulsar?
2. Why Go is a good fit for Cloud-Native Pulsar Apps
3. Building Cloud-Native Pulsar Apps with Go
4. Deploying Cloud-Native Pulsar Apps with Go

What is Apache Pulsar?

streamnative.io

Apache Pulsar is a Cloud-Native Messaging
and Event-Streaming Platform.

Producer-Consumer

Producer Consumer

Publisher sends data and
doesn't know about the

subscribers or their status.
All interactions go through

Pulsar and it handles all
communication.

Subscriber receives data
from publisher and never
directly interacts with it

Topic

Topic

● “Bookies”
● Stores messages and cursors
● Messages are grouped in

segments/ledgers
● A group of bookies form an

“ensemble” to store a ledger

● “Brokers”
● Handles message routing and

connections
● Stateless, but with caches
● Automatic load-balancing
● Topics are composed of

multiple segments

● Stores metadata for
both Pulsar and
BookKeeper

● Service discovery

Store
Messages

Metadata &
Service Discovery

Metadata &
Service Discovery

Pulsar Cluster

MetaData
Storage

Multi-tenancy
Enable multiple user groups to share

the same cluster, either via access
control, or in entirely different

namespaces.

Decoupled data computing and
storage enable horizontal scaling to
handle data scale and management

complexity.

Geo-replication
Support for multi-datacenter

replication with both asynchronous
and synchronous replication for built-

in disaster recovery.

Enable historical data to be offloaded
to cloud-native storage and store

event streams for indefinite periods of
time.

Tiered storage Scalability

Pulsar’s Distinguishing Features

Durability
Provides strong data durability
guarantees by fsync-ing data to

multiple disks on each write.

Topics

Tenants
(Compliance)

Tenants
(Data Services)

Namespace
(Microservices)

Topic-1
(Cust Auth)

Topic-1
(Location Resolution)

Topic-2
(Demographics)

Topic-1
(Budgeted Spend)

Topic-1
(Acct History)

Topic-1
(Risk Detection)

Namespace
(ETL)

Namespace
(Campaigns)

Namespace
(ETL)

Tenants
(Marketing)

Namespace
(Risk Assessment)

Pulsar Instance

Pulsar Cluster

Multi-Protocol

Streaming

Consumer

Consumer

Consumer

Subscription

Shared

Failover
Consumer

ConsumerSubscription

In case of failure
in Consumer B-0

Consumer

ConsumerSubscription

Exclusive
X

Consumer

Consumer

Key-Shared

Subscription

Pulsar
Topic/Partition

Messaging

Why Go is a good fit for Cloud-Native
Pulsar Apps

Cloud-Native Advantages
● Go has become a popular choice for building microservices and cloud-native

applications. This is due in part to its efficiency and scalability, as well as its
support for concurrency and parallelism.

● Go also has strong support for building HTTP servers and clients, making it
well-suited for building RESTful APIs and other web services.

● Go has several third-party libraries and frameworks that are specifically
designed for cloud-native development. K8s itself is written in Go.

Pulsar Ecosystem Support
● Apache Pulsar provides a Golang client library that allows developers to

interact with Pulsar clusters from their Golang applications.

○ This client library provides a simple and intuitive API that allows developers to publish and
consume messages from Pulsar topics, as well as perform administrative tasks like creating and
managing topics.

● Pulsar provides a Golang Function API that allows developers to write stream
processing applications in Golang.

○ This API provides a simple and efficient way to process data streams in real-time. Developers
can easily create custom stream processing functions in Golang, which can be deployed and
run in Pulsar clusters.

Building Cloud-Native Pulsar
Apps with Go

The Pulsar Go Client
● You can use a Pulsar Go client to create Pulsar producers, consumers, and

readers in Golang

● You can install the pulsar library by using either go get or go module

● API docs are available on the Godoc page;
https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar

https://pkg.go.dev/github.com/apache/pulsar-client-go/pulsar

Live Local Dev & Test
Walkthrough

Packaging Cloud-Native
Pulsar/Go Applications

Cloud-Native = Containerization
● The first step in deploying a cloud-native application is to containerize the

application.

● Containerization is a method of virtualization that allows you to package an
application and its dependencies into a single unit, called a container.

● Containers provide an isolated environment for an application to run in,
ensuring that it has access to all the resources it needs without interfering with
other applications running on the same system.

Containerization with Buildpacks
● Buildpacks are a technology for building container images that automate the

process of compiling and packaging application code and its dependencies.

● Buildpacks are used to create container images for cloud-native applications
without needing to create an maintain a dockerfile.

● Buildpacks detect the language and framework used by the application, and
then automatically download and install the necessary dependencies and
configurations.

Container Tagging & Publication
● After generating the containers with buildpacks.io, they only exist on your

development machine.

● They must be tagged and published to a container repository in order to be
deployed outside of your local development environment.

Live Containerization
Walkthrough

Deploying Cloud-Native
Pulsar/Go Applications

Deployment Manifest
● Kubernetes uses YAML files called manifests to define the configuration for the

application deployment.

● Manifests include details about the container image to use, how many replicas
of the application to run, and other configuration details such as;

○ Deployment

○ ConfigMap /Secret

○ PersistentVolumeClaim

ConfigMaps
● ConfigMaps are Kubernetes objects that provide a way to store configuration

data in key-value pairs.

● They are typically used to store configuration data that is required by an
application at runtime, such as environment variables or configuration files.

● They can be used to store configuration files that are required by an application
at runtime. The configuration files can be mounted as a volume in a container
using the volumes field in the pod manifest.

Live Deployment
Demonstration

Summary

Key Takeaways
1. Apache Pulsar is a cloud-native messaging and event streaming platform
2. Go is a good fit for developing cloud-native applications that use Pulsar
3. Apache Pulsar’s native Go client library makes developing cloud-native Pulsar

applications easy.
4. Buildpacks are a great tool for containerizing your Go applications
5. Walked through the process of packaging and deploying a cloud-native Go

application that interacts with Apache Pulsar

https://github.com/david-streamlio/lets-go-pulsar

