
Memory Management
in Go: The good, the

bad and the ugly
Liam Hampton

Sr. Cloud Advocate @ Microsoft

@liamchampton

@liamchampton

@liamchampton

The Learning Goal(s)
1. Understand the Go memory model
2. Understand how to manage memory in Go

@liamchampton

Introduc)on to memory management

@liamchampton

@liamchampton

Overview

Memory management
“Memory management keeps track of each memory
location, regardless of either it is allocated to some
process, or it is free.”

@liamchampton

Overview

Memory management
“Memory management keeps track of each memory
location, regardless of either it is allocated to some
process, or it is free.”

Why is it important?
Prevents memory leaks, program crashes and a slow
down of your system

You must also avoid buffer overflows as this could lead
to security vulnerabilities

Stack vs Heap

@liamchampton

@liamchampton

Stack

Stores local vars and function call frames

Last In First Out (LIFO)

Typically a fixed size

Allocated at runtime

Fast and efficient but is limited in size

@liamchampton

Heap

Stores dynamically allocated memory

Grow and shrink during the execution of a
program

Slower than the stack = less efficient

Much larger capacity

@liamchampton

Stack vs Heap

Stack : short-lived data Heap : long lived data

Go’s memory model

@liamchampton

@liamchampton

Garbage collector

What is it?
Automatically attempts reclaim memory
which was allocated by the program but is no
longer referenced

@liamchampton

Garbage collector

What is it?
Automatically attempts reclaim memory
which was allocated by the program but is no
longer referenced

No need to manually manage memory

@liamchampton

Garbage collector

What is it?
Automatically attempts reclaim memory
which was allocated by the program but is no
longer referenced

No need to manually manage memory

Reduces security and leak risks

@liamchampton

Gorou)nes & Channels
What is a goroutine?
A lightweight execution thread and a function
that executes concurrently with the rest of the
program

Very cheap with low overheads when
compared to traditional threads

Syntax:
go foo()

@liamchampton

Goroutines & Channels
What is a goroutine?
A lightweight execution thread and a function
that executes concurrently with the rest of the
program

Very cheap with low overheads when
compared to traditional threads

Syntax:
go foo()

What is a channel?
Channels are a built-in feature that allows go
routines to communicate in a thread-safe
manner

”Communication over channels” to
synchronise access to shared memory
between goroutines

They prevent race conditions, locks and other
synchronisation issues

Syntax:
chan keyword
Write: c <- x
Read: <-c

@liamchampton

Memory model summary

- Ensures the program does not run out of memory by
utilising the garbage collector

- Allows goroutines to communicate safely

... Therefore, perfect to write / run concurrent and parallel code

Managing memory in Go

@liamchampton

@liamchampton

Two ways you can help manage memory

The “new” function

- used to allocate memory for a variable of a
given type

- It takes a type as an argument and returns a
pointer to a newly allocated zero value type.

Example
ptr := new(int)
*ptr = 0

@liamchampton

Two ways you can help manage memory

The “new” function

- used to allocate memory for a variable of a
given type

- It takes a type as an argument and returns a
pointer to a newly allocated zero value type.

Example
ptr := new(int)
*ptr = 0

The “make” function

- Used to allocate memory for data structures
(slices / maps / channels)

- Initialises the memory to a useful default
value, unlike the ”new” function.

Example:
slice := make([]int, 3, 5)

@liamchampton

Two ways you can help manage memory

When to use them?

Use ”new” to create a var and initialise it
later

Use “make” when to create a data
structure and use it right away

What is a memory leak?

@liamchampton

@liamchampton

Memory leak
What is it?
It is when memory is no longer needed but is
also not freed up causing the program to
eventually run out of memory / crash

@liamchampton

Memory leak
What is it?
It is when memory is no longer needed but is
also not freed up causing the program to
eventually run out of memory / crash

Scenarios:
- Not properly terminating a goroutine, causing

it to continue to hold on to the allocated
memory

- Assigning a global variable and never using it
again

- An infinite loop that creates objects and never
releases them

@liamchampton

Memory leak
What is it?
It is when memory is no longer needed but is
also not freed up causing the program to
eventually run out of memory / crash

Scenarios:
- Not properly terminating a goroutine, causing

it to continue to hold on to the allocated
memory

- Assigning a global variable and never using it
again

- An infinite loop that creates objects and never
releases them

Tools:
“pprof” – built-in package that can be used
to profile and analyse the memory
utilisation of a program

@liamchampton

Memory leak
What is it?
It is when memory is no longer needed but is
also not freed up causing the program to
eventually run out of memory / crash

Scenarios:
- Not properly terminating a goroutine, causing

it to continue to hold on to the allocated
memory

- Assigning a global variable and never using it
again

- An infinite loop that creates objects and never
releases them

Tools:
“pprof” – built-in package that can be used
to profile and analyse the memory
utilisation of a program

How can YOU help?
- Be vigilant when using global variables

and understand the code you are
writing

- Use ”defer” keyword to help reduce
leaks with files, sockets and database
connections

Code examples

@liamchampton

@liamchampton

Good example – defer

file, err := os.Open("file.txt") // open the file
if err != nil {
 log.Fatal(err)
}
defer file.Close()

@liamchampton

Good example – defer

file, err := os.Open("file.txt") // open the file
if err != nil { // check for an error
 log.Fatal(err)
}
defer file.Close()

@liamchampton

Good example – defer

file, err := os.Open("file.txt") // open the file
if err != nil { // check for an error
 log.Fatal(err)
}
defer file.Close() // defer the closure

@liamchampton

Good example – defer

file, err := os.Open("file.txt") // open the file
if err != nil { // check for an error
 log.Fatal(err)
}
defer file.Close() // defer the closure

Schedules the file.Close() to execute after
the surrounding function

File is closed even if the function errors!

@liamchampton

Good example – garbage collector

type MyStruct struct {
 data []byte
}

func main() {
 var myStruct MyStruct
 myStruct.data = make([]byte, 100000000)
}

@liamchampton

Good example – garbage collector

type MyStruct struct {
 data []byte
}

func main() {
 var myStruct MyStruct
 myStruct.data = make([]byte, 100000000)
}

@liamchampton

Good example – garbage collector

type MyStruct struct {
 data []byte
}

func main() {
 var myStruct MyStruct
 myStruct.data = make([]byte, 100000000)
}

@liamchampton

Good example – garbage collector

type MyStruct struct {
 data []byte
}

func main() {
 var myStruct MyStruct
 myStruct.data = make([]byte, 100000000)
}

Once the function ends, the GC will reclaim
the 100MB memory that was used by
myStruct

@liamchampton

Bad example

var data []byte

func main() {
 data = make([]byte, 100000000)
 // Do some processing
 // ...
}

@liamchampton

Bad example

var data []byte

func main() {
 data = make([]byte, 100000000)
 // Do some processing
 // ...
}

@liamchampton

Fixed

var data []byte

func main() {
 data = make([]byte, 100000000)
 // Do some processing
 // ...
}

func main() {
 data := make([]byte, 100000000)
 // Do some processing
 // ...
}

Give the ‘data’ variable a local scope
so it will be cleaned when the
function exits

@liamchampton

Bad example

func recursion(n int) {
 if n == 0 {
 return
 }
 recursion(n-1)
}

func main() {
 recursion(1000000)
}

@liamchampton

Bad example

func recursion(n int) {
 if n == 0 {
 return
 }
 recursion(n-1)
}

func main() {
 recursion(1000000)
}

@liamchampton

Bad example

func recursion(n int) {
 if n == 0 {
 return
 }
 recursion(n-1)
}

func main() {
 recursion(1000000)
}

That is a lot of loops! 😱

@liamchampton

Fixed

func recursion(n int) {
 if n == 0 {
 return
 }
 recursion(n-1)
}

func main() {
 recursion(1000000)
}

func recursion(n int) {
 if n == 0 {
 return
 }
 recursion(n-1)
}

func main() {
 recursion(1000)
}

@liamchampton

Go routines

https://go.dev/play/p/gwtTDGaLZ0g

https://go.dev/play/p/gwtTDGaLZ0g

@liamchampton

Channels

https://go.dev/play/p/Oj1A93xPA7t

https://go.dev/play/p/Oj1A93xPA7t

@liamchampton

Pointers / References

https://go.dev/play/p/q4r7sJSG4gX

https://go.dev/play/p/q4r7sJSG4gX

Memory management in other languages

@liamchampton

@liamchampton

Rust
Uses “ownership” and “borrowing” approach
to model and manage memory

Every value has a singular variable that’s
considered the “owner” and when the owner
goes out of scope, the value it owns will be
dropped – this prevents data races and
undefined behaviours etc.

It is predominantly the developer's
responsibility to allocate and deallocate
memory usage

fn main() {
 let s = String::from("Hello");
 let len = calculate_length(&s);
 println!("The length of '{}' is {}.", s, len);
}

fn calculate_length(s: &String) -> usize {
 s.len()
}
// output : The length of 'Hello' is 5.

@liamchampton

Python

Uses a built-in garbage collector that uses a
technique called “reference counting”

“Cyclic garbage collector” and periodically
checks for unreachable objects and frees up
their memory = a delay in object becoming
unreachable and when its memory is freed up

Python has a memory manager used for
allocation and deallocation of memory for
large objects (arrays / lists etc)

@liamchampton

Java

Similar to Go and uses both a stack and heap

Garbage collector manages the memory on
the heap and uses a technique called “mark
and sweep”

Built in memory manager allowing for explicit
control of the memory usage

Tips for effective memory management

@liamchampton

@liamchampton

Top tips…

1. Use the “defer” keyword

@liamchampton

Top tips…

1. Use the “defer” keyword

2. Use the garbage collector wisely

@liamchampton

Top)ps…

1. Use the “defer” keyword

2. Use the garbage collector wisely

3. Monitor memory utilisation

Conclusion!

@liamchampton

@liamchampton

Conclusion

Memory management is complicated!

Garbage collector handles the most part of it
for you

Memory management is different across
languages

Leaks are BAD!

🤌

@liamchampton

Thank You – Let’s Connect!

