
Test Driven
Development & Go

Conf 42, Golang - 2023

whoami

● Product Engineering Manager - timegram.io

● AWS Community builder

● Tech Content Writer & public speaker

● Love doing gym, travelling, sports

Mohammad Quanit

Conf 42, Golang - 2023

Agenda

● Test Driven Development - TDD

● Go Testing Package

● HTTP Testing (Rest API)

● Table Driven Testing

● Other Open Source Testing Frameworks

● Best Practices

Conf 42, Golang - 2023

Test Driven Development

● TDD is a software development process that involves repeatedly writing test cases first and
then write actual code.

● It forces developers to think in terms of implementers or users.

● By writing tests first, you can catch errors early in the development process, and ensure that
your code is easy to test, maintain, and refactor.

● TDD helps engineers to write better code, reduce time on debugging, and leads to more
predictable and reliable software.

● TDD is not just a part of some merely testing mechanism but a method of designing software
(Mental model).

Conf 42, Golang - 2023

TDD Stages

Conf 42, Golang - 2023

Motivations for TDD

● Shortens the programming feedback loop

● Encourage engineers to write modular, testable & maintainable code

● Helps catch errors early, reduce debugging time

● Reduces the cost of change

● Boosts confidence with sense of continuous reliability and success

● If you don’t have tests, how do you know your code is doing the right thing?

Conf 42, Golang - 2023

Go Testing Package

Conf 42, Golang - 2023

Go Testing

Go comes with a built-in command line testing tool that automates the process of
running tests called “go test”

Test functions with a specific signature, must start with Test that takes a pointer *Testing.t

Test Coverage tool can generate a coverage report, which shows how much of your code is
covered by tests

Go testing package include supports Benchmarks, that can be used to measure
performance of your code

Go testing package provides supports for several flags that can be used to control the
behaviour of your tests

Conf 42, Golang - 2023

Go Testing Package

Tests are written on files ending with “_test.go” & every test function starts with Test keyword

which takes a testing parameter

Conf 42, Golang - 2023

HTTP Testing

Conf 42, Golang - 2023

HTTP Testing

Testing an HTTP server in Go involves sending HTTP requests to the server and verifying
the responses it returns.

Conf 42, Golang - 2023

Table Driven Testing

Conf 42, Golang - 2023

Table Driven Testing

Table-driven tests allow you to test a function with multiple inputs and expected
outputs.

Conf 42, Golang - 2023

Testing Frameworks by GO Community

● Gomega - Matcher/Assertion lib (https://github.com/onsi/gomega)

● GoCheck - Featured rich testing lib
(https://github.com/go-check/check)

● Testify - Toolkit for mocks, assertions (https://github.com/stretchr/testify)

● GoMock - A dedicated mocking framework
(https://github.com/golang/mock)

● Ginkgo - A BDD testing framework for expressive specs
(https://github.com/onsi/ginkgo)

Conf 42, Golang - 2023

https://github.com/onsi/gomega
https://github.com/go-check/check
https://github.com/stretchr/testify
https://github.com/golang/mock
https://github.com/onsi/ginkgo

Best Practices to Follow

● Write test case before actual code

Conf 42, Golang - 2023

Best Practices to Follow

● Write test case before actual code

● Write small, focused tests

Conf 42, Golang - 2023

Best Practices to Follow

● Write test case before actual code

● Write small, focused tests

● Use go test command to test case along with -v flag for verbose logs

Conf 42, Golang - 2023

Best Practices to Follow

● Write test case before actual code

● Write small, focused tests

● Use go test command to test case along with -v flag for verbose logs

● Use Mock dependencies to simulate actual behavior of the feature

Conf 42, Golang - 2023

Best Practices to Follow

● Write test case before actual code

● Write small, focused tests

● Use go test command to test case along with -v flag for verbose logs

● Use Mock dependencies to simulate actual behavior of the feature

● Utilize code coverage tools that like go test -cover

Conf 42, Golang - 2023

Best Practices to Follow

● Write test case before actual code

● Write small, focused tests

● Use go test command to test case along with -v flag for verbose logs

● Use Mock dependencies to simulate actual behavior of the feature

● Utilize code coverage tools that like go test -cover

● Automate and refactor your test cases e.g using CI tools

Conf 42, Golang - 2023

Best Practices to Follow

● Write test case before actual code

● Write small, focused tests

● Use go test command to test case along with -v flag for verbose logs

● Use Mock dependencies to simulate actual behavior of the feature

● Utilize code coverage tools that like go test -cover

● Automate and refactor your test cases e.g using CI tools

● Always keeps your test cases up to date

Conf 42, Golang - 2023

Thank You
 Conf 42, Golang Team

Follow me on:

Twitter
Github
LinkedIn

https://twitter.com/mquanit
https://github.com/Mohammad-Quanit
https://www.linkedin.com/in/mquanit/

