
Automate merges to keep 
builds healthy

aviator.co



Ankit Jain
Cofounder of Aviator

Building Developer Workflow Automation Platform

Previously Engineer at:

Google Adobe Shippo Homejoy Sunshine

@ankitxg



Merging? How hard can it be?



Monorepo Polyrepo

Easier dependency management

Simpler refactoring of 
cross-project changes

Vulnerability management

Standardized tooling

Code sharing

Simpler CI / CD management

Independent build pipelines

Build failures are localized



Monorepo: How often do your mainline builds fail?

Is your current CI system enough?

Internal dependencies
Infrastructure issues

Timeouts

Race Conditions

Third-Party 
Dependencies

Shared state /
Concurrency 

Issues

Implicit conflicts

Stale 
Dependencies



Monorepo: Merging challenges

PR #1

PR #2

main



Impact of build failures on developer productivity

Source: ResearchGate

Build Police

Rollbacks

Chain Reaction 
Failures

Delayed 
releases

https://www.researchgate.net/figure/Team-size-VS-build-failure-for-Projects-written-in-Java_fig1_326304083


How often is your team stuck due to broken builds?

Source: xkcd

NOT MERGING

BUILD IS BROKEN

https://xkcd.com/303/


So, what’s the solution?



Merge automation

Merge Queue
Merge Train

Open Source



Simple Merge Queue

PR #1

READY

PR #2

READY

main



Large team

CI time = 30 mins

PRs per day = 100

Total merge time = 50 hours

Total CI runs = 50

Small team

CI time = 30 mins

PRs per day = 10

Total merge time = 5 hours

Total CI runs = 50

Simple Merge Queue - Performance Review



Can we do better?



PR #1

PR #2

PR #3

PR #4

Batching Changes

main



Batching Changes - Bisect when fails

main

PR #1

PR #2

PR #3

PR #4



Median case

CI time = 30 mins

PRs per day = 100

Batch size = 4

Failure rate = 10%

Total merge time = ~24 hours

Total CI runs = ~48

Best case

CI time = 30 mins

PRs per day = 100

Batch size = 4

Total merge time = 12.5 hours

Total CI runs = 25

Batching Changes - Performance Review



Can we still do better?



Reimagine merges



Reimagining merges

Parallel Universes



Reimagining merges

main



Reimagining merges - optimistic queues

PR #1

READY

PR #2

READY

main

main-alt



Reimagining merges - optimistic queues

PR #1

READY

PR #2

READY

main



Reimagining merges - optimistic queues

PR #1

READY

PR #2

READY

main



Reimagining merges - Failure

PR #1

READY

PR #2

READY

main



Reimagining merges - Failure

PR #1

READY

PR #2

READY

main



Median case

CI time = 30 mins

PRs per day = 100

Failure rate = 10%

Total merge time = ~6 hours

Total CI runs = ~150

Best case

CI time = 30 mins

PRs per day = 100

Total merge time = < 1 hour

Total CI runs = 100

Optimistic queue - Performance Review



Can we still do better?



Batching optimistic queues

main

PR #1

PR #2

PR #3

PR #4

PR #5

PR #6



Batching optimistic queues

main

PR #1

PR #2

PR #3

PR #4

PR #5

PR #6



Batching optimistic queues

main

PR #1

PR #2

PR #3

PR #4

PR #5

PR #6



Median case

CI time = 30 mins

PRs per day = 100

Batch size = 4

Failure rate = 10%

Total merge time = ~4 hours

Total CI runs = ~48

Best case

CI time = 30 mins

PRs per day = 100

Batch size = 4

Total merge time = < 1 hour

Total CI runs = 25

Optimistic queue (batching) - Performance Review



Can we still do better?



Using predictive modeling

PR #1

PR #2

PR #3#1

#2

#3

#3

#2

#3

#3

main



Using predictive modeling

Optimization based on

● Lines of code
● Types of files modified
● Test added / removed
● Number of dependencies



Using predictive modeling

PR #1

PR #2

PR #3#1

#2

#3

#3

#2

#3

#3

main

(0.8)

(0.2)

(0.9)

(0.3)Cutoff: (0.5)



Can we still do better?



Multi-queues



Multi-queues - Using affected targets

PR # Affected targets

1 A

2 B C

3 D

4 B

5 C

6 A

7 C

8 A

9 A

order of 
queuing

Q1 -> 1, 6, 8, 9

Q2 -> 2,4

Q3 -> 2, 5,6

Q4 -> 3



Disjoint multi-queues - Using affected targets

#1

#2

main

#3

#4

backend

frontend





Further optimizations

● Reordering changes - high priority, lower failure risk
● Fail fast - Reordering test execution
● Split test execution - Pre-merge and post-merge testing



Other works



Polyrepo



Merging challenges in Polyrepo

api web

androidios

#1 #1

#1 #1



Merging challenges in Polyrepo

api web

androidios

#1 #1

#1 #1



Flaky test management



Managing Stacked PRs



References

● Keeping master green at scale - Uber
● Bors
● Evergreen - Airbnb’s merge queue
● Merging code in high-velocity repositories - LinkedIn

https://eng.uber.com/research/keeping-master-green-at-scale/
https://bors.tech/
https://www.confluent.io/resources/presentation/evergreen-building-airbnbs-merge-queue-with-kafka-streams/
https://engineering.linkedin.com/blog/2020/continuous-integration


Questions?

aviator.co

We are hiring: aviator.co/jobs

ankit@aviator.co
@ankitxg


