
Leveraging SRE and
Observability Techniques

for the Wild World of Building on LLMs

@cyen
@honeycombio

LLMs ≈ like APIs we know and 💛

App AuthREST
API

 PaymentsREST
API

 TelephonyREST
API

‣ Well-formed inputs
according to a spec

‣ Cleaned-up user
inputs

‣ Well-formed outputs
according to a spec

‣ Standard protocols
(e.g. HTTP, SMTP)

testable
mockable

=

LLMs != like APIs we know and 💛

App AuthREST
API

 PaymentsREST
API

 TelephonyREST
API

 LLMs

REST
API

predictable
∴ testable
∴ mockable

LLMs != like APIs we know and 💛
Normal APIs LLMs
can conceivably scope
the range of inputs

intentionally invites free-form,
natural-language input from usersunit tests

reproducible
(AKA mockable)

deterministic +
(ideally) idempotent

subject to change ("drift" in model
behavior) via public API access

explainable
(AKA debuggable)

based on spec, can
understand how a
change in input →
change in output

prompting can yield very
different responses through
small, subtle changes to
prompt

LLMs: even more unpredictability

App

 LLMs

REST
API

Extra
context

LLMs: how do we define "correct"?

App

 LLMs

REST
API

unit tests

"early access"

staging env

integration tests ☹

observability

observability

AKA: an understanding the
behavior of a system based on
knowledge of its external outputs.

observability

expected actual
(especially in prod!)

Observability: what’s in the box?

App PaymentsREST
API

user_id

endpoint

params

roundtrip_ms

response_status_code

pricing_plan_id

price_usd_cents

payment_source

error_code

user_id

roundtrip_ms

 LLMs

Observability: what’s in the box?

App REST
API

user_id

endpoint

params

roundtrip_ms

response_status_code

app_metadata

user_id

LLM_response

error_code

prompt_version

roundtrip_ms

prompt_text

Observability: ∞ feedback loops

 → OBSERVE

TEST

OBSERVE

IDEATE → WRITE → TEST → RELEASE

Why believe me?

Query Assistant: timeline

May 2023

6 weeks of development

8 weeks of iteration

Query Assistant: goals

"What’s the 95th
percentile latency

on the /checkout
endpoint?"

Query Assistant: goals

🤔

Laws of building on LLMs
‣ Failure will happen—it’s a question of when, not if.

‣ Users will do things you can’t possibly predict.

‣ You will ship a "bug fix" that breaks something else.

‣ You can’t really write unit tests for this (nor practice TDD)

‣ Latency is often unpredictable

‣ Early access programs won’t help you

https://honeycomb.io/blog/hard-stuff-nobody-talks-about-llm

How do we go
forward?

OK, so

Instrumentation ~= docs and tests

App

capture data for your hypotheses

Instrumentation ~= docs and tests

capture data for your hypotheses

Instrumentation for LLMs
‣ user/team IDs
‣ full user input string
‣ add’l product context for prompt
‣ token usage
‣ LLM latency
‣ full LLM response
‣ parse and/or validation errors
‣ user feedback

Instrumentation for LLMs
‣ user/team IDs
‣ full user input string
‣ add’l product context for prompt
‣ token usage
‣ LLM latency
‣ full LLM response
‣ parse and/or validation errors
‣ user feedback

Instrumentation for LLMs
‣ user/team IDs
‣ full user input string
‣ add’l product context for prompt
‣ token usage
‣ LLM latency
‣ full LLM response
‣ parse and/or validation errors
‣ user feedback

Instrumentation for LLMs
‣ user/team IDs
‣ full user input string
‣ add’l product context for prompt
‣ token usage
‣ LLM latency
‣ full LLM response
‣ parse and/or validation errors
‣ user feedback

Instrumentation > EXCEPTIONS
‣ user/team IDs
‣ full user input string
‣ add’l product context for prompt
‣ token usage
‣ LLM latency
‣ full LLM response
‣ parse and/or validation errors
‣ user feedback

Instrumentation for LLMs
‣ user/team IDs
‣ full user input string
‣ add’l product context for prompt
‣ token usage
‣ LLM latency
‣ full LLM response
‣ parse and/or validation errors
‣ user feedback

Emerging
behaviors

Tapping into

DEV 🔥
WRITE → TEST → COMMIT → WRITE → TEST → COMMIT

→ WRITE → TEST → COMMIT→ WRITE → TEST → COMMIT
→ WRITE → TEST → COMMIT→ WRITE → TEST → COMMIT
→ WRITE → TEST → COMMIT→ WRITE → TEST → COMMIT

write lots of code
service ownership
developers on call
test in production

DEV

DEV PROD
identify levers impacting logical
branches in code
(debuggability + reproducibility)

instrument code with intention

compare expected vs actual inspect results after changes go
live; watch for deviations

fail fast / fail first;
embrace fast feedback loops

TDD

ship to prod quickly (CI/CD);
expect to iterate

o11y

A truth in all software systems,
but never more true than with LLMs:

Software behaves in unpredictable, emergent ways,
and the important part is observing your code
as it’s running in production, while users are using it.

Service Level
Objectives

Let’s zoom in on

SLOs: a quick definition

Service Level Objectives codify what it means to
"deliver great service"

‣ "Key user flows like cart checkout should
complete quickly and reliably"

‣ "99.9% of shopping cart checkout attempts
complete error-free in < Xs"

Laws of building on LLMs
‣ Failure will happen—it’s a question of when, not if.

‣ Users will do things you can’t possibly predict.

‣ You will ship a "bug fix" that breaks something else.

‣ You can’t really write unit tests for this (nor practice TDD)

‣ Latency is often unpredictable

‣ Early access programs won’t help you

‣ LINK TO: hard things about hard things blog post

Remember this?

Degradation will
happen.

SLOs can help.

SLOs for developing with LLMs

From others in
the wild

Some more stories

 LLMsApp REST
API

user_id
roundtrip_ms
…

llm_roundtrip_ms
…

app_id
user_id
roundtrip_time
endpoint
params
upstream_time
feature_flag_x
feature_flag_y

 LLMsApp REST
API

prompt_version
prompt_text
model_version
algorithm_version
time_to_first_token
time_to_first_usable_token
prompt_input_x
prompt_input_y

So in the end:
‣ Incorporating LLMs breaks many of our existing tools for ensuring

correctness + a good user experience

‣ Observability can help! Instrument + observe from the outside in

‣ Capture all the metadata to be able to debug and analyze
unexpected behavior in LLMs

‣ Embrace the unpredictability of user input + LLMs: run in
production and plan to iterate fast

thanks!
q? @cyen

@honeycombio

More resources:
https://honeycomb.io/blog/hard-stuff-nobody-talks-about-llm
https://honeycomb.io/blog/improving-llms-production-observability
https://honeycomb.io/blog/llms-demand-observability-driven-development
https://honeycomb.io/blog/we-shipped-ai-product

