
1

Build your next App with 
Web Components



Hey!
Who is this guy?
Name: Andy Desmarais

Twitter/Github/Reddit: terodox

Website: terodox.tech

Background: Full stack 
developer for 17 years

https://terodox.tech


The framework wars

What’s the 
problem?



“
“Every line of frontend code is tech debt 
when it’s written in a framework.”

- Me



We’ve all lost 
sleep to the 
framework wars

▪ Frameworks equate to vendor lock-in

▪ Upgrade fatigue is real

▪ So many dependencies

▪ You always pick wrong

A NEW ALLY HAS APPEARED



Everything you need - components, 
lifecycle methods, style encapsulation, 
slots, AND great documentation!

The best 
framework for 
is the web 
platform



Web components are the combination of a few 
pieces of web technology

Custom Elements - define your own 
elements that the DOM will natively 
render

Shadow DOM - Encapsulate both 
your HTML and CSS to isolate them 
from the rest of the DOM

Web 
Components

It’s in the name!

Templates - Faster render times 
using predefined <template> 
elements

Slots - Allow your consumers to 
provide their own content.

Similar to frameworks:
Angular - Content Projection
React - children
Vue - Slots



Custom Elements allow you to define your own 
elements that the DOM will render natively!

Minimal requirements:

● Must be all lowercase
● Must contain a hyphen “-”

Lifecycle Methods!

● connectedCallback - element added 
to the DOM

● disconnectedCallback - element 
removed from the DOM

● attributeChangedCallback - fired 
every time an observed attribute is 
changed

Custom 
Elements

Bring your own elements 
to the DOM!



The shadowDom provides style encapsulation!

Native to the browser, no need for 
plugins!

Minimal build tooling if you want 
SCSS.

Style 
Encapsulation

And it doesn’t even need 
to be obfuscated!

Image from MDN

https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM


Slots allow us to setup components that will have at 
least part of their content provided by the consumer.

Slots

Allow consumers to 
provide the content!

Codepen

https://codepen.io/terodox/pen/MWoRvbr


Web Components are built into all modern browser. 
This means out documentation is available via the 
best curated docs on the web: MDN!Documentation

MDN has you covered!

Here are the links for everything covered so far:

● Web Components

● Custom Elements

● Shadow DOM

● Slots

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_custom_elements
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_templates_and_slots#adding_flexibility_with_slots


Tooling, Delivery, and Support OH MY!

Is it really 
enterprise 
ready?



Tooling

Web Component Dev 
Tools

No, I wasn’t trying to repeat myself 😝 The 
extension is called Web Component Dev Tools!

Link to the extension

https://chrome.google.com/webstore/detail/web-component-devtools/gdniinfdlmmmjpnhgnkmfpffipenjljo


Delivery

It’s just javascript

One of the best parts of Web Components is they are just javascript. 
Include your script tag and use the tag in your markup!



Delivery

I want minification and 
obfuscation

The simplest version of any of the bundling tools can provide you with 
these small parts you want.



Delivery

Just a script tag

And now you just need to drop your script tag in your html!



Support

IT’S EVERYWHERE!
That you care about

Can I use it - Yes you can! 



Let’s answer some of the most common 
questions I get around building with Web 
Components

But how do I 
handle…?

● Dynamic Templates

● Data Binding

● Routing

● Scss

● State management

🤔



Dynamic 
templates

▪ It’s just javascript!

▪ Basic string concatenation

▪ If you want advanced rendering, check out lit-html! Only 6kb 

and allows:

- Dynamic template rendering

- Data binding

- Event binding

- Attribute binding

- Property binding

https://www.npmjs.com/package/lit-html


Data binding
▪ Data binding can be done through properties!

▪ A web component is an object just like any other. You can pass 

complex data types to properties.

▪ lit-html can also assist here if we want a more fluent binding 

syntax

https://www.npmjs.com/package/lit-html


Routing
▪ Vaadin Router

▪ Features:

- Basic router outlet routing

- Child routes

- Fallback routes (Eg 404)

- Route params

- Redirect

- Lazy loading js bundles

Example implementation

https://vaadin.com/router
https://github.com/terodox/conf-42-basic-project


Scss

Webpack and Rollup both support it!

Example implementation

Webpack Rollup

https://github.com/terodox/conf-42-basic-project


State 
Management

There are a lot of ways to manage state, but here are a 

few options:

● A singleton - Keeps shared state in one place

● Redux - Usually overkill

● Using graphql - Use Apollo for that

Image credit - Kwerenachi Utosu

https://dev.to/kwereutosu/the-k-i-s-s-principle-in-programming-1jfg


Thank you!


