
Key Features

• Auto provision of server resources to support CRUD in REST, GraphQL
& gRPC with minimal configuration

• Validation at the source

• Support DB Schema migration

• Auto Generate API Documentation
(openapi3 docs, GraphQL Playground, .proto file)

• Provide a hook for intercepting the query before execution in order to
append extra data (specifically to support partition keys)

OVERVIEW \
intro to service-engine

c## Multiple Implementations:

service-engine

• SRC for NPM package

service-engine-docker

• Implements NPM package

• SRC for Generic Docker Image

service-engine-template

• Implements Generic Docker Image

• Ideal for bootstrapping new projects

1

2

3

JOE WINGARD | 2021 OCTOBER 15 | SLIDES: tinyurl.com/conf42-service-engine .

Generalized service engine that auto

provisions REST, GraphQL & gRPC services

that support CRUD operations with full

validation to tables, views and materialized

views of several popular databases

https://github.com/sudowing/service-engine
https://www.npmjs.com/package/service-engine
https://github.com/sudowing/service-engine-docker
https://www.npmjs.com/package/service-engine
https://hub.docker.com/r/sudowing/service-engine
https://github.com/sudowing/service-engine-template
https://hub.docker.com/r/sudowing/service-engine
https://www.youtube.com/playlist?list=PLxiODQNSQfKOVmNZ1ZPXbPh6LeVDWtDRc

Key REST Endpoints

Health Check Route

http://localhost:8080/healthz

OpenAPI3 Definitions

http://localhost:8080/openapi

.proto

http://localhost:8080/proto

GraphQL Playground

http://localhost:8080/some-app-service/graphql/

1. Run DB Migrations

2. Autodetects DB resources via DB Survey

3. Builds JOI validators for all DB resources

4. Publishes REST, GraphQL & gRPC services

PostgreSQL
MySQL
SQLite
Oracle

Redshift
SQL Server

:8080 REST

:8080 GraphQL

:50051 gRPC

SE

1

2

3

4

HOW IT WORKS \
startup sequence

http://localhost:8080/healthz
http://localhost:8080/openapi
http://localhost:8080/proto
http://localhost:8080/some-app-service/graphql/

c

KEY CONCEPT \
service call → structured query language

http://localhost:8080/sample-app-name/service/${schema}_${table}/

? occupation = engineer

& state.in = NJ|PA

& handle.like = sudo%

& |page = 5

& |limit = 30

& |orderBy = handle,name_last:desc

& |fields = id,handle,email,name_first

& |seperator = |
c

action method endpoint pattern note

CREATE POST /service/:resource 1 or many

READ GET /service/:resource/record?field_a=alpha&field_b=bravo if resource is keyed

UPDATE PUT /service/:resource/record?field_a=alpha&field_b=bravo if resource is keyed

DELETE DELETE /service/:resource/record?field_a=alpha&field_b=bravo if resource is keyed

READ GET /service/:resource many supported operators

req header key req header value resp header key resp header value description

x-request-id UUID assigned to request for injection into log

x-get-sql truthy x-sql SQL built by service

x-get-count truthy x-count unpaginated count for submitted query

key description

|page Pagination Page

|limit Pagination Limit

|fields Fields to return from the SQL query

|orderBy Fields to order results by. (field_a:desc,field_b,field_c:desc)

|seperator Separator used to separate values submitted in request

SQL Operators

Additional Query Context

REST API Headers

REST API Endpoint Patterns3

4

1 2

5

6

c

http://localhost:8080/sample-app-name/service/${schema}_${table}/

? occupation = engineer

& state.in = NJ|PA

& handle.like = sudo%

& |page = 5

& |limit = 30

& |orderBy = handle,name_last:desc

& |fields = id,handle,email,name_first

& |seperator = |

database

query builder

query validation

GraphQL
resolver

gRPC
method

service call normalizer

REST
view

1

2

3

4

5

6

7

SYSTEM DESIGN \
normalize → validate → build SQL

c

Application Considerations

Unsupported Characters in GraphQL

All DB schema names, resource names and field names must
adhere to GraphQL Schema Definition Language (SDL)

DB Permissions

Migration support is optional -- however if you want to use it
you'll need to ensure the service account being used by the app
has appropriate permissions to create objects and write records.

Returning Fields on CREATE & UPDATE

Not all DBs support returning fields on INSERT & UPDATE
statements.

Postgres does and it's the recommended engine for new projects
implemented this library.

For example, MySQL & Sqlite3 return 201s with no-body in
REST and other payloads in GraphQL & gRPC.

DOCUMENTATION \
video feature overviews & requirements

Feature Overview Videos

• Quick Start
• Key REST Endpoints
• Insomnia Import
• CRUD Operations
• SQL Operators
• Query Context
• API Response Metadata
• Debug Mode
• Permissions
• DB Schema Migrations
• GraphQL Playground and Geoqueries
• gRPC Service (CRUD & Geoqueries)
• Complex Resources (subqueries & aggregate queries)
• Middleware & Redactions

1

https://youtu.be/zwpPLM5LPgo
https://youtu.be/sfmAO4pWC14
https://youtu.be/PzV19iHs-IU
https://youtu.be/KUDqqlxb26M
https://youtu.be/698lXrclFIs
https://youtu.be/wITo_oHjSvM
https://youtu.be/fjuTBT08ELE
https://youtu.be/LjRpv6JZxhI
https://youtu.be/4ptSSnaqvqw
https://youtu.be/84D8_--K5cs
https://youtu.be/8y5BMjHVRUA
https://youtu.be/HFzwwLIqrfQ
https://youtu.be/rzhQlPAoVeI
https://youtu.be/AopYx2XM3yc

PostgreSQL

geo
data

:8080 REST

:8080 GraphQL

:50051 gRPC

SE

MySQL

user
data

:8080 REST

:8080 GraphQL

:50051 gRPC

SE

SQLite

prediction
data

:8080 REST

:8080 GraphQL

:50051 gRPC

SE

SQL Server

inventory
data

:8080 REST

:8080 GraphQL

:50051 gRPC

SE

Oracle

partner
data

:8080 REST

:8080 GraphQL

:50051 gRPC

SE

1

2

3

4

5

api.domain.com

/v1/geography
/v1/user
/v2/prediction
/v1/inventory
/v1/partner

6

Joe Wingard
github @sudowing

keybase @sudowing
linkedIn @joewingard

Project Feedback

Feedback and Recommendations
are best received as Pull-Requests
& GitHub Issues.

Closing Thought

I hope this project is useful to you
and your team. If you find it
valuable, please send me a note!

CLOSING NOTES \
feedback, closing thought & contact info

https://github.com/sudowing
https://keybase.io/sudowing
https://www.linkedin.com/in/joewingard
https://github.com/sudowing/service-engine/pulls
https://github.com/sudowing/service-engine/issues

