enerate pages on demand
Incremental Static Generation (ISG)
o’ With Nuxt.js and LayerO

Layer® ., @Limelight

NELQTRETRE]NR

Solutions Engineer at LayerO by Limelight

Storyblok Ambassador

What to expect from this talk.

What is ISG?

Benefits of ISG

Drawbacks of ISG

Implementing ISG with Nuxt.js and LayerO

EEEEEEE

What is Layer0?

Layer@ . .LimelingTtVVORKs

@ Layer Platform Pricing Resources Company Docs Contact Sales Support @ Login Sign Up

Simple developer workflow.
Instant-loading sites.

All-in-one Jamstack platform to develop, deploy, preview, split test and monitor your frontend

Deploy Free Get a Demo

REVOLVE SHOECARNIVAL AKIRA TIE BAR SHARPER IMAGE kate spade

~~ 296ms loads /—\ 337ms loads ~ 275msloads /7 282ms loads . 386ms loads /™ 407ms loads
' 899K pages 't/ 229K pages \ M} 223K pages * ! 52K pages VN) 48K pages ‘¥) 46K pages

What is Layer0? All-in-one Jamstack platform.

Layer® ., ®Limelight

NETWORKS

01-Whatis ISG?

Layer@ . .LimelingTtVVORKs

& vercel / next.js

emental Static Regeneration #11552

Background

01-Whatis ISG?

Generate static pages on demand,

“Best of both worlds”

O

O

Issues

O

O

Builds only the pages you need,

Fast “static” page loads after the first visit

Feature of your infrastructure and your framework,

Is limited to Next.js on certain platforms

Layer® ., ®Limelight

NETWORKS

Browser
requests a
new page
that has not

yet been
visited

Source: https://static-tweet.vercel.app/

@ This tweet is statically generating.

CDN quickly
returns a universal
“fallback” page
with placeholder
data...

...while fallback is
being displayed,
page’s static build
process is run

@ Saurabh Sharma L 4

We have turned a document platform to a
application platform and you guys are still
fighting over nitty gritty details.

@ This tweet was statically generated.

Build completes
and fallback loads
the static JSON
data displaying the
final page.

Layer® », ®Limelight

KS

Q Saurabh Sharma L 4

We have turned a document platform to a
application platform and you guys are still
fighting over nitty gritty details.

Future visits will
get the statically
built page HTML
(no waiting).

Layer® », ®Limelight

KS

@ Saurabh Sharma L 4

We have turned a document platform to a

Browser requests

application platform and you guys are still
a n eW pa g e fighting over nitty gritty details.
that has not yet ~

been visited
Browser waits for the
SSR generated response

Layer® ., ®Limelight

@ Saurabh Sharma L 4

We have turned a document platform to a
application platform and you guys are still
fighting over nitty gritty details.

Future visits will
get the statically
built page HTML
(no waiting).

Layer® », ®Limelight

KS

02 - Benefits of ISG

Layer@ . .Limeligmﬂtm

- Pages on-demand,
mal static build,
=" No more re-building the website,
- Faster deployments,

- Easy cache purging with LayerO REST API

02 - Benefits of ISG

Layer® ., ®Limelight

03 - Drawbacks of ISG

Layer® ., ®Limelight

=" Breaks immutability

o But not with LayerO as you can choose whether to keep the cache

between deployments

03 - Drawbacks of ISG

Layer® ., ®Limelight

04 - Implementing ISG with Nuxt.js and LayerO

Layer® ., ®Limelight

04 - In Action: ISG with Nuxt.js and LayerO

Layer® ., ®Limelight

o Cache dynamic routes on the edge

- Configure LayerO EdgeJS

04 - Steps to implement ISG with Nuxt.js and LayerO

EEEEEEE

api/blogs.js

const { parse } = require('rss-to-json')

const express = require('express')
const app = express()

const { Router } = require('express')
const router = Router()

s W N R

const hello = require('./blogs')
app.use(hello)

w

router.use('/blogs/:username.json', async (req, res) => {
const slug = req.params.username
let errorResponse = (res) => {
res.writeHead(404, { 'Content-Type': 'application/json' })
res.end(
JSON.stringify({
code: 0,
1)

o

if (require.main dule) {
const port = 3001
app. listen(port, () => {
console. log(API server listening on port ${port}’)

= ® 0 o N

})

s W N

}
try {
let rss = await parse(https://medium.com/feed/@${slug}’)

module.exports = app

7

let resp = JSON.stringify(rss, null, 3)
if (!resp) {
return errorResponse(res)
}
resp = JSON.parse(resp)
res.writeHead(200, { 'Content-Type': 'application/json' })
res.end(
JSON.stringify({
resp,
code: 1,
1
)
catch {
return errorResponse(res)

© o

api/index.js

1
1
1
1
1
16
&
1
1
2
2
2

WwN RS

NN
SN o n s

WNNNNN
© ™

=)

}
3

w oW
N

w

w W
&

module.exports

04.1 - Setup API Routes with Nuxt

Layer® ., ®Limelight

NETWORKS

pages [blogs / _slug.vue

async asyncData({ params, redirect }) {
let link = process.env.API_URL

if (typeof window !== 'undefined') link = window.location.origin
let blogsData = await fetch('${link}/api/blogs/${params.slug}.json").then((res) => res.json())
if (blogsDatal'code'] == @) redirect(404, '/error')

return {
resp: blogsDatal'resp'],
slug: params.slug,
link,

04.2 - Setup dynamic routes with Nuxt

Layer® ., ®Limelight

NETWORKS

mounted() {
if (typeof window !== 'undefined' && window.__client__ === true) {
window.__client__ = false
console. log('Client Side Transition, Populating the cache...')

fetch(" /blogs/${this.slug}")

04.3 - Cache dynamic routes on the edge

Layer® ., ®Limelight

NETWORKS

.get('/blogs/:username', ({ serveStatic, cache, renderWithApp }) => {
cache({
edge: {
maxAgeSeconds: 60 x 60 x 24 x 365, // keep the incrementally generated page for a year
staleWhileRevalidateSeconds: 1, // revalidate the data on page every second
},
browser: false,
})

serveStatic('dist/blogs/:username.html’', {

// When the user requests a page that is not already statically rendered, fall back to SSR.

onNotFound: () => renderWithApp(),
})
9]
.get('/api/blogs/:username.json', ({ serveStatic, cache, renderWithApp }) => {
cache({
edge: {
maxAgeSeconds: 60 x 60 x 24, // cache at the edge for 24 hours

}I

N = &

w

})
serveStatic('dist/blogs/:username.json', {
// When the user requests data that is not already statically rendered, fall back to SSR.

w

()]

onNotFound: () => renderWithApp(),
})
19}

~

W W ww wwwww
=

(==}

04.4 - Configure LayerO EdgeJS

Layer® ., ®Limelight

NETWORKS

[

https://rishi-raj-jain-nuxt-isg-default.layerO.link/

Layer® ., ®Limelight

4

#A Nuxt3 (bea

Getting Started

Concepts

Docs Community

O v C

Nuxt 3 has been re-architected with a smaller core and optimized for faster performance and better developer experience.

¢

Lighter
Up to 75x smaller server
deployments and smaller client

bundle targeting modern browsers.

&S

Composition API
Use the Composition APl and Nuxt
3's composables for true code re-
usability.

&

Webpack 5
Faster build time and smaller
bundle size, with no configuration
required.

»

Faster

Optimized cold start with dynamic
server code-splitting, powered by
nitro.

Nuxt CLI
A new zero-dependency
experience for easy scaffolding and
module integration.

VvV

Vite
Experience lightning fast HMR by
using Vite as your bundler.

A4
o—o0
é

Hybrid 'scon
Incremental Static Generation and
other advanced modes are now
possible.

B

Nuxt Devtools scon

Work faster with info and quick fixes
right in the browser.

\

Vue 3

Vue 3 is a solid foundation for your
next web app.

Get started

®

Suspense

Fetch data in any component,
before or after navigation.

R

Nuxt Kit

Brand new module development
with Typescript and cross-version
compatibility.

TypeScript
Built with native TypeScript and
ESM - no extra steps required.

Layer@ . QLimeIingTtWORKS

Thank You!

Layer@ . .LimelingTtVVORKs

