enerate pages on demand
Incremental Static Generation (ISG)
o’ With Nuxt.js and LayerO
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What to expect from this talk.

What is ISG?

Benefits of ISG

Drawbacks of ISG

Implementing ISG with Nuxt.js and LayerO
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What is Layer0?
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@ Layer Platform Pricing  Resources Company Docs Contact Sales Support @ Login Sign Up

Simple developer workflow.
Instant-loading sites.

All-in-one Jamstack platform to develop, deploy, preview, split test and monitor your frontend

Deploy Free Get a Demo

REVOLVE SHOECARNIVAL AKIRA TIE BAR SHARPER IMAGE kate spade

~~ 296ms loads /—\ 337ms loads ~ 275msloads /7 282ms loads . 386ms loads /™ 407ms loads
' 899K pages 't/ 229K pages \ M} 223K pages * ! 52K pages VN ) 48K pages ‘¥ ) 46K pages

What is Layer0? All-in-one Jamstack platform.
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01-Whatis ISG?
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& vercel / next.js

emental Static Regeneration #11552

Background

01-Whatis ISG?

Generate static pages on demand,

“Best of both worlds”

O

O

Issues

O

O

Builds only the pages you need,

Fast “static” page loads after the first visit

Feature of your infrastructure and your framework,

Is limited to Next.js on certain platforms

Layer® ., ®Limelight
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Browser
requests a
new page
that has not

yet been
visited

Source: https://static-tweet.vercel.app/

@ This tweet is statically generating.

CDN quickly
returns a universal
“fallback” page
with placeholder
data...

...while fallback is
being displayed,
page’s static build
process is run

@ Saurabh Sharma L 4

We have turned a document platform to a
application platform and you guys are still
fighting over nitty gritty details.

@ This tweet was statically generated.

Build completes
and fallback loads
the static JSON
data displaying the
final page.
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Q Saurabh Sharma L 4

We have turned a document platform to a
application platform and you guys are still
fighting over nitty gritty details.

Future visits will
get the statically
built page HTML
(no waiting).
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@ Saurabh Sharma L 4

We have turned a document platform to a

Browser requests

application platform and you guys are still
a n eW pa g e fighting over nitty gritty details.
that has not yet ~

been visited
Browser waits for the
SSR generated response
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@ Saurabh Sharma L 4

We have turned a document platform to a
application platform and you guys are still
fighting over nitty gritty details.

Future visits will
get the statically
built page HTML
(no waiting).
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02 - Benefits of ISG
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- Pages on-demand,
mal static build,
=" No more re-building the website,
- Faster deployments,

- Easy cache purging with LayerO REST API

02 - Benefits of ISG
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03 - Drawbacks of ISG
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=" Breaks immutability

o But not with LayerO as you can choose whether to keep the cache

between deployments

03 - Drawbacks of ISG
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04 - Implementing ISG with Nuxt.js and LayerO
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04 - In Action: ISG with Nuxt.js and LayerO
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o Cache dynamic routes on the edge

- Configure LayerO EdgeJS

04 - Steps to implement ISG with Nuxt.js and LayerO
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api/blogs.js

const { parse } = require('rss-to-json')

const express = require('express')
const app = express()

const { Router } = require('express')
const router = Router()

s W N R

const hello = require('./blogs')
app.use(hello)

w

router.use('/blogs/:username.json', async (req, res) => {
const slug = req.params.username
let errorResponse = (res) => {
res.writeHead(404, { 'Content-Type': 'application/json' })
res.end(
JSON.stringify({
code: 0,
1)

o

if (require.main dule) {
const port = 3001
app. listen(port, () => {
console. log( API server listening on port ${port}’)

= ® 0 o N

})

s W N

}
try {
let rss = await parse( https://medium.com/feed/@${slug}’)

module.exports = app

7

let resp = JSON.stringify(rss, null, 3)
if (!resp) {
return errorResponse(res)
}
resp = JSON.parse(resp)
res.writeHead(200, { 'Content-Type': 'application/json' })
res.end(
JSON.stringify({
resp,
code: 1,
1
)
catch {
return errorResponse(res)

© o

api/index.js
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module.exports

04.1 - Setup API Routes with Nuxt
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pages [ blogs / _slug.vue

async asyncData({ params, redirect }) {
let link = process.env.API_URL

if (typeof window !== 'undefined') link = window.location.origin
let blogsData = await fetch('${link}/api/blogs/${params.slug}.json").then((res) => res.json())
if (blogsDatal'code'] == @) redirect(404, '/error')

return {
resp: blogsDatal'resp'],
slug: params.slug,
link,

04.2 - Setup dynamic routes with Nuxt
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mounted() {
if (typeof window !== 'undefined' && window.__client__ === true) {
window.__client__ = false
console. log('Client Side Transition, Populating the cache...')

fetch(" /blogs/${this.slug}")

04.3 - Cache dynamic routes on the edge
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.get('/blogs/:username', ({ serveStatic, cache, renderWithApp }) => {
cache({
edge: {
maxAgeSeconds: 60 x 60 x 24 x 365, // keep the incrementally generated page for a year
staleWhileRevalidateSeconds: 1, // revalidate the data on page every second
},
browser: false,
})

serveStatic('dist/blogs/:username.html’', {

// When the user requests a page that is not already statically rendered, fall back to SSR.

onNotFound: () => renderWithApp(),
})
9]
.get('/api/blogs/:username.json', ({ serveStatic, cache, renderWithApp }) => {
cache({
edge: {
maxAgeSeconds: 60 x 60 x 24, // cache at the edge for 24 hours

}I

N = &

w

})
serveStatic('dist/blogs/:username.json', {
// When the user requests data that is not already statically rendered, fall back to SSR.

w

()]

onNotFound: () => renderWithApp(),
})
19}

~

W W ww wwwww
=

(==}

04.4 - Configure LayerO EdgeJS
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[

https://rishi-raj-jain-nuxt-isg-default.layerO.link/
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4

#A Nuxt3 (bea

Getting Started

Concepts

Docs Community

O v C

Nuxt 3 has been re-architected with a smaller core and optimized for faster performance and better developer experience.

¢

Lighter
Up to 75x smaller server
deployments and smaller client

bundle targeting modern browsers.

&S

Composition API
Use the Composition APl and Nuxt
3's composables for true code re-
usability.

&

Webpack 5
Faster build time and smaller
bundle size, with no configuration
required.

»

Faster

Optimized cold start with dynamic
server code-splitting, powered by
nitro.

Nuxt CLI
A new zero-dependency
experience for easy scaffolding and
module integration.

VvV

Vite
Experience lightning fast HMR by
using Vite as your bundler.

A4
o—o0
é

Hybrid 'scon
Incremental Static Generation and
other advanced modes are now
possible.

B

Nuxt Devtools scon

Work faster with info and quick fixes
right in the browser.

\

Vue 3

Vue 3 is a solid foundation for your
next web app.

Get started

®

Suspense

Fetch data in any component,
before or after navigation.

R

Nuxt Kit

Brand new module development
with Typescript and cross-version
compatibility.

TypeScript
Built with native TypeScript and
ESM - no extra steps required.
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Thank You!
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