
SZ

SZ

Ducks, Re-ducks,
Redux-Toolkit

modular approaches for
React/Redux app structure

Sergii Zhuravel

Key facts

• Industry:

Telecom, IoT, Automotive, CRM

• Location:

Kyiv, UKR

• Position:

Team Lead

• Company

Absio
Fan of JavaScript and JS frameworks. I like table tennis,
fishing and traveling

Plan to review

•Why good structure for Redux apps is important

•What is wrong with common approaches in Redux apps

•Ducks in details

•Re-ducks and how it differs from Ducks

•What problems Redux Toolkit resolves and how to start to use it.

•Testing of the duckses

Types of state

• Component’s (local) State

• Components shared state

• App’s (global) state

• UI state

• Cache

Redux in 2021?

Why React projects still use Redux

https://dev.to/alexandrudanpop/why-react-projects-still-use-redux-in-2020-395p

Redux in 2021?

Architecture is important, but today we talk not about it

«bad architecture is the single biggest killer of software project»

Architecture Of Large React Apps: Tools and Techniques

https://everyday.codes/javascript/architecture-of-large-react-apps-tools-and-techniques/

What not to do

Issues:

• Redux artifacts are spread over src folder

• When we need to add new entity in Redux –
we should open different folders (actions,
reducers, sagas, selectors), and add or
modify different files

Function vs Feature

Approaches:

• Left side - function-first structure of the
folders. Function-first means that your
top-level directories are named after the
purpose of the files inside. So you
have: containers, components, actions, red
ucers, etc. Problems - scaling

• Right side - feature-first approach.
Feature-first means that the top-level
directories are named after the main features
of the app: product, cart, session. Problems–
mix of elements of different purpose, it will
be harder to change in the future.

Separate State Management from UI

Think about your application on the long run. Imagine what happens with the codebase
when you switch from React to another library. Or think how your codebase would
use ReactNative in parallel with the web version.

Scaling your Redux App with ducks

https://www.freecodecamp.org/news/scaling-your-redux-app-with-ducks-6115955638be/

Ducks: Redux Reducer Bundles

«I find as I am building my redux app, one piece of functionality at a time, I keep needing to
add {actionTypes, actions, reducer} tuples for each use case. I have been keeping these in
separate files and even separate folders, however 95% of the time, it's only one
reducer/actions pair that ever needs their associated actions.

To me, it makes more sense for these pieces to be bundled together in an isolated module
that is self contained, and can even be packaged easily into a library.»

Ducks modular Redux (Erik Rasmussen)

https://github.com/erikras/ducks-modular-redux

Ducks - example

Ducks- rules

A module...

MUST export default a function called reducer()

MUST export its action creators as functions

MUST have action types in the form npm-module-or-app/reducer/ACTION_TYPE

MAY export its action types as UPPER_SNAKE_CASE, if an external reducer needs to listen
for them, or if it is a published reusable library

Ducks – origin of the name

«Java has jars and beans. Ruby has gems. I suggest we call these reducer bundles
"ducks", as in the last syllable of "redux".»

Ducks modular Redux (Erik Rasmussen)

https://github.com/erikras/ducks-modular-redux

Ducks – use

You can continue to do this:

import { combineReducers } from 'redux';

import * as reducers from './ducks/index’;

const rootReducer = combineReducers(reducers);

export default rootReducer;

Ducks– use

You can continue to do this:

import * as widgetActions from './ducks/widgets';

Ducks – use

There will be some times when you want to export something other than an action creator. That's
okay, too. The rules don't say that you can only export action creators. When that happens, you'll
just have to enumerate the action creators that you want.

import {loadWidgets, createWidget, updateWidget, removeWidget} from './ducks/widgets';

// ...

bindActionCreators({loadWidgets, createWidget, updateWidget, removeWidget}, dispatch);

Ducks – examples of implementation

• React Redux Universal Hot Example uses ducks. See /src/redux/modules

• Todomvc using ducks

https://github.com/erikras/react-redux-universal-hot-example
https://github.com/goopscoop/ga-react-tutorial/tree/6-reduxActionsAndReducers

Meet Re-ducks

“The original ducks modular approach is a nice simplification for redux and offers a structured
way of adding each new feature in your app.

Yet, we wanted to explore a bit what happens when the app scales. We realized that a single file
for a feature becomes too cluttered and hard to maintain on the long run.

This is how re-ducks was born. The solution was to split each feature into a duck folder.”

Scaling your Redux App with ducks

https://github.com/erikras/ducks-modular-redux
https://github.com/alexnm/re-ducks
https://www.freecodecamp.org/news/scaling-your-redux-app-with-ducks-6115955638be/

Inside re-ducks duck folder

Scaling your Redux App with ducks

https://www.freecodecamp.org/news/scaling-your-redux-app-with-ducks-6115955638be/

Re-ducks - rules

A duck folder MUST:

• contain the entire logic for handling only ONE concept in your app,
ex: product, cart, session, etc.

• have an index.js file that exports according to the original duck rules.

• keep code with similar purpose in the same file, such as reducers, selectors,
and actions

• contain the tests related to the duck.

Re-ducks – types

The types file contains the names of the actions that you are dispatching in your application. As a
good practice, you should try to scope the names based on the feature they belong to. This helps
when debugging more complex applications.

Re-ducks –actions

This file contains all the action creator functions.

Re-ducks – operations

To represent chained operations
you need a redux middleware to
enhance the dispatch function.
Some popular examples
are: redux-thunk, redux-saga or re
dux-observable.

https://github.com/gaearon/redux-thunk
https://github.com/redux-saga/redux-saga
https://github.com/redux-observable/redux-observable
https://github.com/redux-observable/redux-observable

Re-ducks – reducers

Re-ducks – selectors

• Together with the operations, the

selectors are part of the public
interface of a duck. The split
between operations and
selectors resembles the CQRS
pattern.

• Selector functions take a slice of

the application state and return
some data based on that. They
never introduce any changes to
the application state.

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html

Re-ducks – index

This file specifies what gets
exported from the duck folder. It
will:

• export as default the reducer

function of the duck.

• export as named exports the

selectors and the operations.

• export the types if they are

needed in other ducks.

Ducks – tests

A benefit of using Redux and the
ducks structure is that you can
write your tests next to the code
you are testing.

Testing your Redux code is fairly
straight-forward:

Inside this file you can write tests
for reducers, operations, selectors,
etc.

Redux Toolkit

• configureStore() – wrapper for createStore. Default support - redux-thunk and Redux

DevTools Extension

• createReducer(): special syntax that lets you supply a lookup table of action types to case

reducer functions, rather than writing switch statements. Uses Immer – so we can write
“mutable” code for immutable updates

• createAction(): helper to create action creators

• createSlice(): helper to automatically generates a slice reducer with corresponding action

creators and action types

• createAsyncThunk, createEntityAdapter, createSelector utility

Summary:

• ducks, re-ducks or redux-toolkit – can use the same pattern/approach for all Redux code

• feature-based separation of the redux code is more flexible and allows more opportunities for

scaling when codebase is growing

• Redux-toolkit provides useful tools and best practices

• How do you structure your redux apps?

Links:

• https://dev.to/alexandrudanpop/why-react-projects-still-use-redux-in-2020-395p

• https://everyday.codes/javascript/architecture-of-large-react-apps-tools-and-techniques/

• https://habr.com/ru/post/515700/

• https://www.freecodecamp.org/news/scaling-your-redux-app-with-ducks-6115955638be/

• https://github.com/erikras/ducks-modular-redux

• https://redux-toolkit.js.org/

• https://github.com/sergii-zhuravel/conf42-js2021

https://dev.to/alexandrudanpop/why-react-projects-still-use-redux-in-2020-395p
https://everyday.codes/javascript/architecture-of-large-react-apps-tools-and-techniques/
https://habr.com/ru/post/515700/
https://www.freecodecamp.org/news/scaling-your-redux-app-with-ducks-6115955638be/
https://github.com/erikras/ducks-modular-redux
https://redux-toolkit.js.org/
https://github.com/sergii-zhuravel/conf42-js2021

Thank you!
Sergii Zhuravel

szhuravell@gmail.com

https://twitter.com/SZhuravel

mailto:szhuravell@gmail.com
https://twitter.com/SZhuravel

