

Interactive command-line tutorials with WebAssembly

Robert Aboukhalil

sandbox.bio

WebAssembly

What is WebAssembly?


```
char * hello() {
   return "Conf42";
}

(module
   (table 0 anyfunc)
   (memory $0 1)
   (data (i32.const 16) "Conf42\00")
   (export "memory" (memory $0))
   (export "hello" (func $hello))
   (func $hello (; 0 ;) (result i32)
        (i32.const 16)
   )
}
```

WebAssembly Text (WAT)

Google Earth

Figma

AutoCAD

sql.js

Performance

1Password

eBay

GenomeRibbon.com

Portability

Cloudflare, Fastly

Wasmtime

Node, Deno

Wasm3

How to get started

Compile $C/C++ \rightarrow WebAssembly$

Emscripten

```
□ Ih3 / seqtk Public

Toolkit for processing sequences in FASTA/Q formats

□ MIT license
□ 1.1k stars ♀ 291 forks
```

```
$ gcc seqtk.c \
    -o seqtk \
    -02 \
    -1m \
    -1z

    * emcc seqtk.c \
        -o seqtk.js \
        -02 \
        -1m \
        -s USE_ZLIB=1 \
        -s FORCE_FILESYSTEM=1
```

./seqtk fqchk data.fastq

Module.callMain(["fqchk", "data.fastq"])

Emscripten

```
\begin{array}{cccc} & & \rightarrow & emcc \\ & & \rightarrow & em++ \\ & & & \rightarrow & emar \\ & & & \rightarrow & emar \\ & & & & \rightarrow & emmake \\ & & & & cmake \\ & & & & \rightarrow & emcmake \\ & & & & configure \\ & & & \rightarrow & emconfigure \\ \end{array}
```

Learn more

levelupwasm.com

sandbox.bio

Why sandbox.bio uses WebAssembly

.js, .wasm awk.wasm With WebAssembly ls.wasm FS Server **Browser**

Advantages:

- Low cost
- Highly scalable
- More secure
- More responsive
- Easier to maintain state

Disadvantages:

- Data size is limited
- Must be compilable to Wasm

Without WebAssembly

Too little or too much computation (in the browser)

Frontend UI

High-CPU, high-RAM, long running analysis

Sweet Spot: audio/video processing, gaming, simulations, playgrounds, etc.

Pre-compiled tools already exist (in the browser)

Use pre-compiled tools!

Trying to replace containers (on the server)

Sweet Spot: safely running user-provided code, edge computing

Resources

Resources

Tutorials (awk, jq)

Playgrounds (grep, sed, awk, jq)

Resources

Biowasm (github.com/biowasm/biowasm) for examples of compiling complex tools to WebAssembly

Learn more @ levelupwasm.com

Serverless Genomics

Using WebAssembly and Cloudflare Workers to power genomics analysis

AUGUST 28, 2019 · 4 comments

Beyond The Browser: Getting Started With Serverless WebAssembly

APRIL 5, 2019 • 7 comments

How We Used WebAssembly To Speed Up Our Web App By 20X WebAssembly and SIMD: A match made in the browser

How SIMD makes compute-intensive tools practical on the web

Hit the Ground Running with WebAssembly 🚀

Level up commandline playgrounds with WebAssembly

levelupwasm.com/free