
Conf42 Javascript 2022

Platform freedom with Micro-frontends

Conf42 Javascript 2022

Saravana Balaji Srinivasan
Senior Software Engineer @Red Hat

Full-stack Developer

Intro

Conf42 Javascript 2022

Red Hat Story

Conf42 Javascript 2022

Landscape

We live in a world where web
technologies have
dominated software
development.

Default choice for most
applications.

Software
Development Landscape

Conf42 Javascript 2022

Foundation

Well though and understood
set of Standards, Patterns
and Techniques as a strong
foundation.

Standards,
Patterns and Techniques

Conf42 Javascript 2022

Ecosystem

Rich ecosystem that has
been maturing over the
years

Ecosystem

Conf42 Javascript 2022

Static Typed Language

TypeScript created the
perfect compromise for
Static Type Languages
believers.

Static
Typing

Conf42 Javascript 2022

Browser Everywhere

Browser is now more than
just the window for the
internet.

Browsers became part of an
important trend as the
mechanism to distribute any
Graphical User Interface
based applications.

Browser
Everywhere

Conf42 Javascript 2022

Multiple Distributions

Conf42 Javascript 2022

Architectures

Evolutionary
An evolutionary

architecture supports
incremental, guided

change as a first
principle across

multiple dimensions.

Micro Frontends
Design approach in

which a front-end app
is decomposed into

individual,
semi-independent

“microapps” working
loosely together.

Serverless
Incorporate third-party
“Backend as a Service”,

and/or that include
custom code

run as Functions.

Microservices
Architectural style that

structures an
application as a

collection of
independent services.

Architectures

Conf42 Javascript 2022

Micro-frontends

Conf42 Javascript 2022

Micro-frontends

Conf42 Javascript 2022

"An architectural style where independently
deliverable frontend applications are composed
into a greater whole"

Cam Jackson
https://martinfowler.com/articles/micro-frontends.html

Conf42 Javascript 2022

Goal
GOAL OF MICRO-FRONTENDS ?

Conf42 Javascript 2022

Micro-frontends

Conf42 Javascript 2022

Diversification

It is not only good for
money but also for
technology

Micro-frontends

Conf42 Javascript 2022

Example

* DMN is a modeling language and notation for the precise specification of business decisions and business rules.

Conf42 Javascript 2022

Micro-frontends

UI

Libraries
Frontend

Backend

UI

UI

UI

Library

Library

Application

Application Application

ApplicationApplication

Library Library

Build time

composition

Application

Application

Application

Application

Application Application

Run time

composition

Monolith Modular monolith Integrated
applications

Micro-Frontends

Conf42 Javascript 2022

Micro-frontends

Monolith Web
Application

Datastore

Backend

Frontend

Web Application based
on Microservices

Architecture

API

Frontend

Microservic
e A

Microservic
e A

Microservic
e C

Datastore Datastore Datastore

Web Application based
on Microservices and

Micro-front end
Architecture

API

Microservic
e A

Microservic
e B

Microservic
e C

Datastore Datastore Datastore

Micro-fron
t end A

Micro-fron
t end B

Micro-fron
t end C

Conf42 Javascript 2022

Micro-frontends

Container/
App Shell

Micro
frontend A

Micro
frontend C

Micro
frontend B

Decides when/where to
show each Micro frontend

BFF A BFF B BFF C

No Micro frontend
communicate

 directly to each other

Backend Microservice

BFF ensures seamless user
interaction regardless of
the platform the frontend
application is running on

Conf42 Javascript 2022

Micro-frontends

aka client-side integration:

After the container gets loaded in the browser, it gets access to micro front
end source code

✅ A can be deployed independently at any time and can deploy different
versions of it, and Container can decide which one to use

❌ tooling + setup is far more complicated

Independent deployment makes it challenging to test/verify (build a good test
suite for it)

Run-Time integration
Types of Integration

Team A decides to develop a new
version of Component C

Ready! Let's deploy it

Publishes C as
https://mydomain.com/c.js

User navigates to
https://mydomain.com

Container app is loaded

Container apps fetches new C from
https://mydomain.com/c.js

Conf42 Javascript 2022

Micro-frontends

22

aka compile-time integration:

Before the container gets loaded in the browser, it gets access to
micro frontend source code;

Foreign modules are accessible during build

✅ Easy to setup and understand

❌ Container has to be re-deployed every time child has updated
and tempting to tightly coupled Container + child together

Build-time integration

Types of Integration

Team A decides to develop a new version
of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C so install a
new dependency

Team B builds a new Container with new
C

Team B deploys a new Container with new
C

Conf42 Javascript 2022

Micro-frontends
Concerns

23

Another concerns - Styling
What you should do:

- Custom CSS from your project:
- Use CSS-in-JS library
- Use frameworks built-in component style scoping

- Vue's and Angular has good ones
- "Namespace" all your CSS

- CSS coming from other libraries
- Use a component library that does css-in-js
- Manually build the css library and apply namespacing techniques to it
- Scope-it

- Shadow DOM or iframes!

Conf42 Javascript 2022

Micro-frontends
Concerns

24

Conf42 Javascript 2022

Micro-frontends
Concerns

25

- Pros
✅ Great degree of isolation;

Styling
Global variables
Shadow DOM was not a option in 2019

✅ Some libraries play directly with body of the page

✅ We only use it when necessary

Context Isolation via iframes

- Cons:
❌ Makes your app feel 'old'

❌ Less flexible than other options

❌ Hard to integrate routing, history;

❌ Challenging to make the app responsive

❌ Not Content-Security-Policy friendly

❌ Harder to make apps communicate

- Nothing new, exciting, even a bit of 'yuck"

Conf42 Javascript 2022

Why do we need a new
architecture?

Conf42 Javascript 2022

Cloud Native Tooling

Minimize code changes

The components to be distributed
should be preserved untouched and

with avoiding feature flags.

Bridge

It has to embrace different
generations of technology stack.

Multiple Distributions

The origin of multiplying architecture
is rooted in the need to distribute
the same set of components in a

myriad of platforms.

requirements

Tooling

Conf42 Javascript 2022

Introducing
Multiplying Architecture

Conf42 Javascript 2022

What is
Software Architecture?

Conf42 Javascript 2022

“Architecture is about the important stuff.
Whatever that is.”

Ralph Johnson

Conf42 Javascript 2022

The Multiplying
Architecture

What is important for the Multiplying
Architecture is the abstraction.

Conf42 Javascript 2022

The Multiplying
Architecture

The Abstractions

Channel

Top level abstraction
that represents the

hosting environment,
like a website or a
desktop application.

Editor

Editor is a specialized
type of View, that gets
a file content as input

and is able to serve
the content state back
to the Channel through

the Envelope.

View

View is a portable set of
widgets that are exposed

as an unit to the
Channel through the

Envelope.

Envelope

Enable transparent
communication

between Components
(View/Editor) and

Channel

core

Conf42 Javascript 2022

Online Channel

Conf42 Javascript 2022

Browser extension Channel

Conf42 Javascript 2022

Github extension Channel

Conf42 Javascript 2022

VSCode extension Channel

Conf42 Javascript 2022

Components
Interaction

<div>

Channel (VS Code, Desktop, Browser, …)

MyChannel

Implements:
Channel,
MyServiceApi

Consumes:
MyEnvelopeApi

MyEditor

Implements:
Editor

Consumes:
MyServiceApi

MyEnvelope

Defines:
MyEnvelopeAp
i
MyServiceApi

Implements:
MyEnvelopeApi

Consumes:
Editor

Conf42 Javascript 2022

Components
Interaction

Envelope Advantages

Context Isolation (CSS and JS)

Autonomous Teams

Independent Release Cycles

Type Safe Communication

Micro-frontend

Conf42 Javascript 2022

Multiplying Architecture in
Practice

Conf42 Javascript 2022

Build-time issues

- Foreign modules are accessible during build
- Container has to be re-deployed every time child has updated and

tempting to tightly coupled Container + child together;
- One single change to prod. requires full a long rebuild
- Dependency versions alignment
- No clear app/team isolation
- Duplication of library loading

Runtime-time issues with iframes

- Iframe doesn't help me share libraries/dependencies
- Duplication of library loading

Built time x Runtime Integration
Integration Issues

Conf42 Javascript 2022

Integration Issues

Container

Micro frontend A Micro frontend C
Micro frontend B

Container fetches
micro-frontends

React 17.0.1 React 17.0.1 React 17.0.1

http://domain/a.js http://domain/c.js

Conf42 Javascript 2022

Federated Modules
to the Rescue!

Conf42 Javascript 2022

Federated Modules

● Part of Webpack 5
● Allows loading separately compiled programs parts
● Solution for runtime integration of Micro frontends
● Allow referencing program parts that are not yet known at compile time.
● Each micro frontend can run in isolation

Conf42 Javascript 2022

Federated Modules

-> Remote Routes

-> ModuleFederation Plugin
On webpack config

-> shared dependencies

Conf42 Javascript 2022

Federated Modules

-> Import of Federated Modules

-> Lazy loading via Route
+

 Suspense

Conf42 Javascript 2022

Goals of Multiplying Architecture

Minimize code changes

The components to be distributed
should be preserved untouched
and with avoiding feature flags.

Bridge

It has to embrace different
generations of technology stack.

Multiple Distributions

The origin of multiplying architecture
is rooted in the need to distribute
the same set of components in a

myriad of platforms.

Solve a problem

Goals

Conf42 Javascript 2022

We Achieved Platform with Multiplying
Architecture

Achievements

- Microservices architecture
- Able to finally take advantage of runtime integration
- Each team can build/deploy their own micro frontend
- No duplication of library loading
- Ability to deploy multiple pieces of your application to different servers without

iframes
- Have a portion of an application getting too big and wants a dedicated team? Split it

out.
- That split you just made was a bad idea? Merge it back together.
- Finally we are able to real decoupling.
- Be able to evolve tech stack independently

Conf42 Javascript 2022

Code sample -
https://github.com/kiegroup/kie-tools/tree/main/examples

https://github.com/kiegroup/kie-tools/tree/main/examples

Conf42 Javascript 2022

Questions

Conf42 Javascript 2022

Thank you
Saravana Balaji Srinivasan

