Bl
ymetis e
1 e

Database Guardrails Adam Furmanek

New age for developers
and databases

https://www.metisdata.io/

https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://www.metisdata.io

Where we used to be...

> ,A < — RN

N

A P
| ==
l ¥J.1 0
4

(4]
X

OL
. 4.0
/s
I IT ' '
User

Where we are now

verything is complex

NS
N

T

Amazon Route 53

Sl Public subnet —\
NAT gateway

ol App subnet

Drupal
instance

— Data subnet

Memcached

_—

DB cluste!
replica

r

EFS mount
target

s

g

Amazon
CloudFront

v

Amazon S3

Internet
gateway

- Auto Scaling
Application Load
Balancer

— Public subnet —

NAT gatewp

'
'
'
"
V3 3'5
s =
E>» £.8
1 S
Eie
w
Aupo Scaling 0
'
'
= —_ '
— App subnet — Data subnet -
o l :
‘
Drupal Memcached DB cluster
instance primary

Y

-

..m-
i
~ e

Amazon EFS

EFS mount

target

Monitoring doesn’t make it simpler

%) WILDMETRIX

Datacenter

ec M Threads Memory

700AM 7:30AM 800AM 830AM 9S00AM TO0AM 7:30 AM

S800AM 830AM 9:00 AW e M 0,48 % User Time
Processor — % DPC Time Processor Memory
06
| -40,000
04
| -20,000
|
M Mrﬂ W W M J‘J’W: l M LAY —
} j 5 i UG Moty)
7:00 Al 7:30 AM 8:00 AM 830 AM 900 Al 7:00 AM 7:30 Al 8:00 A 8:30 Al 9:00 AM
Network € M Bytes Sent/sec Disk i A e fer M % Disk Time Processor = S — Pages/sec
1,500,000~ 100-

1,000,000
50-
500,000 ‘ ‘
| L | sl ot 1

i e

] S

A’ metis

8:00 AM 830 AM 900 AM

7:00 Al 7:30 AM

8:00 AM 830 AM 9:00 Al

0 S e —
840AM 84SAM BS0AM SSSAM 900AM 90SAM 910AM SISAM

What breaks in the current world?

Problems with databases

Slow queries.
Code changes

Inaccurate statistics.
Incompatible changes in schema.
Bugs.
Missing indexes.

. Query changes Schema changes
Data quality. Y ENang .

Configuration.

Locks.

Slow queries

const user = repository.g
.where("user.id = 123")
] s

leftJoin("user.details”, "user_details table")
leftJoin("user.pages", "pages_table")
leftJoin("user.texts", "texts table")
leftJoin("user.questions”, "questions_table")
leftJoin("user.reports”, "reports_table")
leftJoin("user.location"”, "location_table")
leftJoin("user.peers”, "peers_table")

(

=

This reads ~300k rows and runs for 25 seconds.

SELECT *

FROM users AS user

LEFT JOIN user_details_table AS detail ON detail.user_id = user.id
LEFT JOIN pages_table AS page ON page.user_id = user.id

LEFT JOIN texts_table AS text ON text.user_id = user.id

LEFT JOIN questions_table AS question ON question.user_id = user.id
LEFT JOIN reports_table AS report ON report.user_id = user.id

LEFT JOIN location_table AS location on location.user_id = user.id
LEFT peers_table AS peer ON peer.user_id = user.id

WHERE user.id = €123’

Slow queries

get("user").where("user.id = 123") SELECT *
FROM users AS user
WHERE user.id = '123'

const userQuery = repository.
const user = userQuery().get
const details = userQ

.leftJoin("user. ", "user_details_table") SELECT *
.getOne(); FROM users AS user
rQuery() LEFT JOIN user_details_table AS detail ON detail.user_id=user.id
pages", "pages_table") WHERE user.id = '123'
SELECT *

rQuery()

w m FROM users AS user
.texts", "texts_table")

LEFT JOIN pages_table AS page ON page.user_id=user.id
WHERE user.id = '123'

userQuery()

.questions”, "questions_table™) SELECT *

FROM users AS user

LEFT JOIN texts_table AS text ON text.user_id=user.id
WHERE user.id = '123'

eftloinAndSelect("user.reports”, “"reports_table")
0 SELECT *
1 FROM users AS user
"location_table™) LEFT JOIN questions_table AS question ON question.user_id=user.id

WHERE user.id = '123'

SELECT *
FROM users AS user
LEFT JOIN reports_table AS report ON report.user_id=user.id

return { WHERE user.id = '123

...user,

...details, SELECT *
.pages, FROM users AS user
texts LEFT JOIN location_table AS location ON location.user_id=user.locationId
TE SR WHERE user.id = '123'
.questions,
.reports, SELECT *
-location FROM users AS user

. peers LEFT JOIN peers_table AS peer ON peer.user_id=user.clientId
WHERE user.id = '123"'

SIOW q ueries FROM boarding_passes

-- 135 Seconas

WITH cte_performance AS (
SELECT *, MDS5(MDS(ticket_no)) AS double_hash
FROM boarding_passes

)

SELECT COUNT(*)

FROM cte_performance AS Cl1
JOIN cte_performance AS C2 ON C2.ticket_no = Cl.ticket_no AND C2.flight_id

JOIN cte_performance AS C3 ON C3.ticket_no = Cl.ticket_no AND C3.flight_id

Cl.boarding_no
Cl.boarding_no

Cl.flight_id AND C2.boarding_no
Cl.flight_id AND C3.boarding_no

WHERE
Cl.double_hash = '525ac618982920ef37b34aa56a45cdés’
AND C2.double_hash = '525ac618982928ef37b34aa56a45cdés’
AND C3.double_hash = '525ac619982928ef37b34aa56a45cdes’

-- B seconds

SELECT COUNT(*)

FROM boarding_passes AS C1
JOIN boarding_passes AS C2 ON C2.ticket_no = Cl.ticket_no AND C2.flight_id

JOIN boarding_passes AS C3 ON C3.ticket_no = Cl.ticket_no AND C3.flight_id

Cl.boarding_no

Cl.flight_id AND C2.boarding_noc

Cl.flight_id AND C3.boarding_no = Cl.boarding_nc

WHERE
MD5(MD5(C1.ticket_no)) = '525ac61@982928ef37b34aa56a45cdas’
AND MD5(MD5(C2.ticket_no)) = '525ac61@982920ef37b34aa56a45cdes"’
AND MDS(MDS(C3.ticket_no)) = '525ac61898292@ef37b34aa56a45cd@s"’

Incompatible changes in schema

Adding a column

May cause issues when we use SELECT *
May cause table reorganization because of lack of space (and outage in result)

Dropping a column
Nearly never safe

Altering the column type

May change the representation, this depends on the ORM and the driver
May require some extensions installed to the database engine
May cause table reorganization

Missing Indexes

May cause scanning whole table instead of
getting rows directly.

May cause using inefficient JOIN strategy
(nested loop instead of hash join or merge
join).

Index

Created automatically with a primary key
May be created on demand

May store one or more columns

Stores data in an order, so it’s easy to do
binary search

Some index types

B-Tree

Hash index

GIS-based (for geolocation)
GIN (inverted indexes)

Too many indexes

Indexes are not free

They store data in a specific order that UD]ﬂ §> : <

needs to be maintained over time
They need to copy the data on the
side to build additional dictionaries
Updating one row may cause an
update in multiple indexes

Do not index blindly! Evaluate if the
performance increases

Bugs

WHEN YOU FORGET T0
ADD THE WHERE CLAUSER

Y/

-
-’

INAN
SOL DELETE STATEMENT

A metis

Halloween problem

Phenomena when updating the row causes a
change in the physical location of the row.

The same row may be modified multiple times.

UPDATE employees
SET salary= salary + (salary * 18 / 108)
WHERE salary < 12060

ORM challenges - n+1 selects

Problem:

aircrafts = aircrafts.load();

for(aircraft in aircrafts) {
seatsCount aircraft.seats.size;

}

This generates:

SELECT * FROM aircrafts;

SELECT * FROM seats WHERE aircraft_code
SELECT * FROM seats WHERE aircraft_code
SELECT * FROM seats WHERE aircraft_code

o n
w N e

However, this could be done in one query:

SELECT * FROM aircrafts
LEFT JOIN seats ON seats.aircraft_code = aircrafts.aircraft_code

Aircrafts

aircraft_code
* model
* range

Seats

aircraft_code
seat_no
* fare_conditions

ORM challenges - joins

Normalization leads to multiple joins
that may be slow.

We may need to decompose these
queries manually.

We may need to rework our domain
model.

We may need to change bounded
contexts.

const user = repository.get("user")

.where("user.id = 123")
leftJoin("user.details"”, "user_details_table")
leftJoin("user.pages", "pages table")
leftJoin("user.texts", "texts table")
leftJoin("user.questions"”, "questions_table")
leftJoin("user.reports”, "reports_table")
leftJoin("user.location"”, "location_table")
leftJoin("user.peers”, "peers table")
getOne();

return user;

SELECT *

FROM users AS user

LEFT JOIN user_details_table AS detail ON detail.user_id=user.id

LEFT JOIN pages_table AS page ON page.user_id=user.id

LEFT JOIN texts_table AS text ON text.user_id=user.id

LEFT JOIN questions_table AS question ON question.user_id=user.id

LEFT JOIN reports_table AS report ON report.user_id=user.id

LEFT JOIN location_table AS location ON location.user_id=user.locationId
LEFT JOIN peers_table AS peer ON peer.user_id=user.clientId

WHERE user.id = '123'

ORM challenges - polymorphism

Polymorphism
Table Per Type (TPT) Table Per Concrete Class (TPC)
aka Joined Subclass aka Table Per Class

Table Per Hierarchy (TPH)
aka Single Table

ORM challenges - data types

SQL OOP
Spatial data Pair of numbers
Binary data Array of bytes
varchar String
decimal float/double

What if your database is used by multiple heterogeneous applications?

ORM challenges - lack of visibility

Transaction isolation level

Each transaction has a level (SERIALIZABLE,
READ COMMITTED, etc))

What's the default?

Can you change it?

Transaction scope

When is transaction started? When does it end?
Do you have nested transactions?

Commit/rollback

Who controls how things are committed and
rolled back?
What happens in case of errors?

Caching

Is the data cached?
Does it work with parallel connections?
What about sticky sessions/

Pooling

Do you have a connection pool?
Will it scale well?
How often do you recycle the connection?

Query hints

How do you make sure indexes are used?
How do you configure join strategy?

ORM challenges - migrations

How do you define your migrations

SQL files with CREATE TABLE...
Code first with ORM model
Or maybe you already have the database?

How do you track which things were executed

Keep another table with history
Make sure changes are idempotent
You run them manually

How do you roll back

Up + Down methods

What if there are multiple
heterogeneous applications?

What if your ORM creates tables
automatically?

How do you deal with migrations in unit
tests?

How do you fix errors which you spot
later on?

ORM challenges - reviews

Changes are scattered in
various places

Triggers? Stored
procedures? Functions?

There are multiple moving

pieces It's not clear which tables,
e Model indexes, or views are used
e Migrations
e Declarative

configuration

Reading new property may
cause new queries to be
executed

Tests - do they work?

Integration

Load testing?

Cost
Load test takes hours to complete (think caching, tiered compilation, etc.)
Data distribution and cardinality

You can't test your EU stack with the data from the USA
What about smaller countries?

Hardware and environment

GPUs are expensive and not very available
Edge computing? Custom hardware?
Do you pay for it 24/7?

Data anonymity

What about SSN? How do you anonymize it in pre-production?

YOU MUST HEALI&KN
YOU'RE DOI

OW!WHAT
ﬁ“’,m

R T

rhakéamém‘"e‘.‘org
. . S [=

Solution - Database Guardrails

Know the context to find the root cause

- TDONTAIWAYS |

A - <%

e d
‘}

o

DO IT IN PRODUCTION

A metis

Telemetry

Ability to collect data - logs, metrics,
traces.

Visibility

Seeing “what” inside the system.

Observability

Deep dive into technical details for root
cause analysis.

Application Performance
Management

High-level end-to-end system health.

Monitoring and Observability

Monitoring Observability

Alerts about errors.

Often swamps with raw data,
metrics, charts, graphs.

Often application-agnostic,
focuses on infrastructure.

Rarely connects the dots between
various systems.

Shows root causes of the errors.
Provides semantic understanding
of what is happening.
Understands the characteristics of
the application.

Makes the interconnection clear
and visible.

Observability

We need: ‘

Logs
Traces
Metrics

Telemetry

We face multiple challenges:

Heterogeneous applications
Correlations
Extensibility

OpenTelemetry (OTel)

Set of SDKs for instrumentation
Supported by Cloud Native Computing Foundation (CNCF)
This is a standard + a set of libraries for various languages.
You need some backed as well (i.e. Jaeger or Prometheus)
Based on Signals - information that is categorized and
processed

Traces

Metrics

Logs
Workhorse of modern observability!

OpenTelemetry Collection

Infra/Host/VM/Pod/Container ——Logs

‘ H ~— Traces

‘ Application ~—— Metrics

Auto and Manual instrumentation
T T H ——Raw Data

------------------ T"""_"""“""" -------_]--_ - Enriched Data
Infra

System App Traces App Infra
Logs gs metrics motrics

[-

Logs Traces Metrics

vy |

Enrichment Processor

v v

Exporter

Attributes

OpenTelemetry <

Collector

Correlated
Telemetry

Traces Metrics

Logs

«correlate P

<correlate»

EBackcnd(s)

Traces and spans in OTel and Jaeger

"name”: "Hello-Greetin
"context": {
"trace_id":

"span_id":

» i Unique ID — {context}
}J
“"parent_id": "0x@ F3

"start_time":

e Edge service Y "\\ ‘ A
i ,u‘ \
"end_time": "2822

"attributes”: {

o I
i {context}
"http.route”: "some_routel” / kﬂext} TRACE
B

"events": [

{ N
“"name"”: "hey there!", {context} {context}\ ‘
"timestamp”: "2022-04-29T718:52:58.114561Z", / ‘ E
"attributes”: {

"event_attributes”: 1

} w SPANS
{

"attributes”: {

"event_attributes”: 1

What to observe?

Executing the query
P Query is parsed into an Abstract Syntax Tree (AST).
a rs e r This allows to manipulate the query mechanically.
R °t Query is rewritten to a standard form.
ew r I e r This makes processing the query easier.
P I A plan is prepared. It contains details of how to read
a n n e r data, how to join tables, how to filter rows, etc.

Exe C Uto r Finally, the query is physically executed.

Anatomy of an SQL query

QUERY PLAN

Nested Loop Left Join (cost=6.92..245675.96 rows=12012 width=412)
EXPLAIN Join Filter: (bp-flight._id = f.flight_id)
SELECT * -> Nested Loop Left Join (cost=1.28..244888.01 rows=77 width=387)
FROM Flights AS f Join Filter: (s.aircraft_code = f.aircraft_code)
LEFT JOIN aircrafts_data AS ad ON ad.aircraft_code = f.aircraft_code -> Nested Loop Left Join (cost=1.28..244849.88 rows=1 width=372)
LEFT JOIN seats AS s ON s.aircr‘aft_code = ‘F.aircraft_code Join Filter: (ml.airport_code = f.departure_airport)
LEFT JOIN ticket_flights AS tf ON tf.flight_id = f.flight_id -> Nested Loop Left Join (cost=1.28..244792.02 rows=1 width=273)
LEFT JOIN boarding_passes AS bp ON bp.flight_id = f.flight_id -> Nested Loop Left Join (cost=0.85..244791.55 rows=1 width=252)
LEFT JOIN tickets AS t ON t.ticket no = tf.ticket no -> Nested Loop Left Join (cost=0.42..244783.10 rows=1 width=148)
LEFT JOIN bookings AS b ON b.book_ref = t.book_ref Join Filter: (tf flight_id = f.flight_id)
LEFT JOIN airports AS a ON a.airport_code = f.departure_airport Zlbiesten oL e lom (cost (AT A0 vowe i dckie 2]
WHERE f.flight_id = 1676 Join Filter: (ad.aircraft_code = f.aircraft_code)

-> Index Scan using flights_pkey on flights f (cost=0.42..8.44 rows=1 width=63)
Index Cond: (flight_id = 1676)

-> Seq Scan on aircrafts_data ad (cost=0.00..1.09 rows=9 width=>52)

Seq Scan on ticket_flights tf (cost=0.00..244772.15 rows=105 width=33)

Filter: (flight_id = 1676)

-> Index Scan using tickets_pkey on tickets t (cost=0.43..8.45 rows=1 width=104)
Index Cond: (ticket_no = tf.ticket_no)

'
v

-> Index Scan using bookings_pkey on bookings b (cost=0.43..0.47 rows=1 width=21)
Index Cond: (book_ref = t.book_ref)
-> Seq Scan on airports_data ml (cost=0.00..56.56 rows=104 width=99)
-> Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)
-> Materialize (cost=5.64..608.16 rows=156 width=25)
-> Bitmap Heap Scan on boarding_passes bp (cost=5.64..607.38 rows=156 width=25)
Recheck Cond: (flight_id = 1676)
-> Bitmap Index Scan on boarding_passes_flight_id_seat_no_key (cost=0.00..5.60 rows=156 width=0)
Index Cond: (flight_id = 1676)

Anatomy of an SQL query

QUERY PLAN
Each plan consists of nodes. [iested Loop Leftioig (cost=6.89.§75713.37 rows=11704 width=411) =
. . 1 Nested Loop Left Jo ‘ =1.z&.174945.21|v =77 width=326 =
Nodes have costs associated with them. Seakeop eyl T =

Join Filter: (s.aircraft_code = f.aircraft_code)
-> Nested Loop Left Join (cost=1.28..174907.08 rows=1 width=371)

Cost is an arbitrary measure of “how hard it Jcmmmur f.departure_airport)
B ” N d L Left Joi =1.28..174849.22 =1 width=272)
is to get the whole dataset sScibonpl oft Jom ot Vel —
-> Nested Loop Left Join (cost=0.85..174848.75 rows=1 width=251)
-> Nested Loop Left Join (cost=0.42..174840.30 rows=1 width=147)

Most important parts are: Join Filter: (tf.flight_id = f.flight_id)
-> Nested Loop Left Join (cost=0.42..9.64 rows=1 width=115)
. Join Filter: (ad.aircraft_code = f.aircraft_code)
Scans - Sequentlal Scan Index Scan’ -> Index Scan using flights_pkey on flights f (cost=0.42..8.44 rows=1 width=63)
index-Only scan Index Cond: (flight_id = 1676)
JOinS = Nested LOOp HaSh Merge -> Seq Scan on aircrafts_data ad (cost=0.00..1.09 rows=9 width=52)

-> Seq Scan on ticket_flights tf (cost=0.00..174829.35 rows=105 width=32)
Filter: (flight_id = 1676)

Index Scan using tickets_pkey on tickets t (cost=0.43..8.45 rows=1 width=104)

Index Cond: (ticket_no = tf.ticket_no)

Others: Limit, Materialize, Sort

v

-> Index Scan using bookings_pkey on bookings b (cost=0.43..0.47 rows=1 width=21)

] Idex Cond: (book_ref = t.book re
. > Seq Scan ¢n airports_data ml |(cost=0.00..56.56 rpws=104 width=99)
https://www.pgmustard.com/docs/explain N =TT :

-> Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)
->» Materialize (cost=5.61..592.98 rows=152 width=25)

-> | Bitmap Heap Scan pn boarding_passes bp (cost=5.61..592.22 rows=152 width=25)

Recheck Cond: (fliaht_id = 1676)
> Bitmap Index Scan én boarding_passes_flight_id_seat_no_key (cost=0.00..5.57 rows=152 width=0)
Index Cond: (flight_id = 1676)

Database Guardrails

Prevent bad code
from reaching
production

Understand what's
happening inside
the application

Apply stats from
production

Monitor the
system
end-to-end

Understand the
application
characteristics

Turn raw data into
actual knowledge

Troubleshoot
automatically by
connecting the dots

Focus on the root
cause, not on the
manifestation

Work across stages

Be proactive and push to the left!

Waiting for tickets from customers is expensive.
Load tests are slow, too late, and too expensive.

Issues need to be identified early and automatically.

WHAT DO WE WANT?
TO DELIVER BETTER SOFTWARE!

WHEN DO WE WANT IT?

CONTINUOUSLY!!

&

A’met.s

Metis

On-demand Source code
analysis integration

We got all your
bases covered!
Database

observability

Pull Request
analysis

Query and
database activity
visibilit

Source code integration

Web server integration

Open Telemetry

Capturing trace and REST calls Js ﬁ 6 Prisma '.‘Q

ORM integration

Instrumenting SQL queries GQ,LA @5?5;&8 e adWws

Observing all connectivity

SQL driver integration

Capturing all database interactions

Pull Request analysis

©

a9
-

GitHub Actions

Server Observabllity Dashboard

PGVer) G2 Memsry: Ustime.
ono chu - Free memory (GB) Theoughput (Bytes/Sec) Avg. active sessions
o fend e

oate

 Percent

A Adlis ll il
200 GET
PR = ae 345.04K 1 9 10 —— —
: . .
Insights
Instalied om 'm o
5 overvn OB 18

Configurations

400 rropertios

squ

explain (

analyze,
costs,
verbose,
buffers,
tising,
format json
)
select
< Metis Prod platform Observability Reports l-f Host: metis-prod-v2.cofhrj7zmyn4.eu-central-l.rds.amazonaws.com (@ Database: platform @ Last update: now E‘ nt(") as count_passengers
Tables Size Index Usage postgees_sir.boarding pass as bp
eg as bl using (booking leg id)
as using (flight_id)
Schema Name Table Name Index Name Daily Usage king b using (booking id)
= Average Duration (ms)
public _prisma_migrations _prisma_migrations_pkey
public api_key api_key_api_key_key
public api_key api_key_pkey
public api_key api_key_user_id_idx Hourly Calls
public insights_breakdown insights_breakdown_pkey
public insights_breakdown insights_breakdown_span_id_idx
public

insights_breakdown insights_breakdown_trace_id_idx

summary

Database may You need to be Metis covers all of
break proactive that
e Bugs e Load tests o App
e ORM quirks are too late integration
e Database e Constant e Pullrequests
inefficiency monitoring is e Observability

needed e Safety

ymetis

O30
m%

metis

Thank you!

https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://www.metisdata.io

