
https://www.metisdata.io/

Database Guardrails

New age for developers 
and databases

Adam Furmanek

https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://www.metisdata.io


Where we used to be…



Where we are now



Everything is complex



Monitoring doesn’t make it simpler



What breaks in the current world?



Problems with databases
Slow queries.

Inaccurate statistics.

Incompatible changes in schema.

Bugs.

Missing indexes.

Data quality.

Configuration.

Locks.

Code changes

Schema changesQuery changes



Slow queries

This reads ~300k rows and runs for 25 seconds.



Slow queries



Slow queries



Incompatible changes in schema
Adding a column

● May cause issues when we use SELECT *
● May cause table reorganization because of lack of space (and outage in result)

Dropping a column

● Nearly never safe

Altering the column type

● May change the representation, this depends on the ORM and the driver
● May require some extensions installed to the database engine
● May cause table reorganization



Missing Indexes
May cause scanning whole table instead of 
getting rows directly.

May cause using inefficient JOIN strategy 
(nested loop instead of hash join or merge 
join).

Index

● Created automatically with a primary key
● May be created on demand
● May store one or more columns
● Stores data in an order, so it’s easy to do 

binary search

Some index types

● B-Tree
● Hash index
● GIS-based (for geolocation)
● GIN (inverted indexes)



Too many indexes
Indexes are not free

● They store data in a specific order that 
needs to be maintained over time

● They need to copy the data on the 
side to build additional dictionaries

● Updating one row may cause an 
update in multiple indexes

● Do not index blindly! Evaluate if the 
performance increases



Bugs
Halloween problem

Phenomena when updating the row causes a 
change in the physical location of the row.

The same row may be modified multiple times.



ORM challenges - n+1 selects
Problem:

This generates:

However, this could be done in one query:



ORM challenges - joins
Normalization leads to multiple joins 
that may be slow.

We may need to decompose these 
queries manually.

We may need to rework our domain 
model.

We may need to change bounded 
contexts.



ORM challenges - polymorphism

Polymorphism

Table Per Concrete Class (TPC)
aka Table Per Class

Table Per Hierarchy (TPH)
aka Single Table

Table Per Type (TPT)
aka Joined Subclass



ORM challenges - data types

SQL OOP

Spatial data Pair of numbers

Binary data Array of bytes

varchar String

decimal float/double

What if your database is used by multiple heterogeneous applications?



ORM challenges - lack of visibility
Transaction isolation level

● Each transaction has a level (SERIALIZABLE, 
READ COMMITTED, etc.)

● What’s the default?
● Can you change it?

Transaction scope

● When is transaction started? When does it end?
● Do you have nested transactions?

Commit/rollback

● Who controls how things are committed and 
rolled back?

● What happens in case of errors?

Caching

● Is the data cached?
● Does it work with parallel connections?
● What about sticky sessions/

Pooling

● Do you have a connection pool?
● Will it scale well?
● How often do you recycle the connection?

Query hints

● How do you make sure indexes are used?
● How do you configure join strategy?



ORM challenges - migrations
How do you define your migrations

● SQL files with CREATE TABLE…
● Code first with ORM model
● Or maybe you already have the database?

How do you track which things were executed

● Keep another table with history
● Make sure changes are idempotent
● You run them manually

How do you roll back

● Up + Down methods

What if there are multiple 
heterogeneous applications?

What if your ORM creates tables 
automatically?

How do you deal with migrations in unit 
tests?

How do you fix errors which you spot 
later on?



ORM challenges - reviews

Changes are scattered in 
various places

There are multiple moving 
pieces

● Model
● Migrations
● Declarative 

configuration

Reading new property may 
cause new queries to be 
executed

Triggers? Stored 
procedures? Functions?

It’s not clear which tables, 
indexes, or views are used

05

01

02 03

04



Tests - do they work?



Load testing?
Cost

● Load test takes hours to complete (think caching, tiered compilation, etc.)

Data distribution and cardinality

● You can’t test your EU stack with the data from the USA
● What about smaller countries?

Hardware and environment

● GPUs are expensive and not very available
● Edge computing? Custom hardware?
● Do you pay for it 24/7?

Data anonymity

● What about SSN? How do you anonymize it in pre-production?



Solution - Database Guardrails



Know the context to find the root cause



01

02

03

04Telemetry

Ability to collect data - logs, metrics, 
traces.

Visibility

Seeing “what” inside the system.

Observability

Deep dive into technical details for root 
cause analysis.

Application Performance 
Management

High-level end-to-end system health.



Monitoring and Observability
Monitoring

● Alerts about errors.
● Often swamps with raw data, 

metrics, charts, graphs.
● Often application-agnostic, 

focuses on infrastructure.
● Rarely connects the dots between 

various systems.

Observability

● Shows root causes of the errors.
● Provides semantic understanding 

of what is happening.
● Understands the characteristics of 

the application.
● Makes the interconnection clear 

and visible.



Observability
We need:

● Logs
● Traces
● Metrics

We face multiple challenges:

● Heterogeneous applications
● Correlations
● Extensibility



OpenTelemetry (OTel)
● Set of SDKs for instrumentation
● Supported by Cloud Native Computing Foundation (CNCF)
● This is a standard + a set of libraries for various languages.
● You need some backed as well (i.e. Jaeger or Prometheus)
● Based on Signals - information that is categorized and 

processed
● Traces
● Metrics
● Logs

● Workhorse of modern observability!



Traces and spans in OTel and Jaeger



What to observe?



Executing the query

Parser Query is parsed into an Abstract Syntax Tree (AST).
This allows to manipulate the query mechanically.

Rewriter Query is rewritten to a standard form.
This makes processing the query easier.

Planner A plan is prepared. It contains details of how to read 
data, how to join tables, how to filter rows, etc.

Executor Finally, the query is physically executed.



Anatomy of an SQL query



Anatomy of an SQL query
Each plan consists of nodes.

Nodes have costs associated with them.

● Cost is an arbitrary measure of “how hard it 
is to get the whole dataset”

Most important parts are:

● Scans - Sequential Scan Index Scan, 
index-Only scan

● Joins - Nested Loop, Hash, Merge
● Others: Limit, Materialize, Sort

https://www.pgmustard.com/docs/explain



Database Guardrails

Prevent bad code 
from reaching 
production

Understand what’s 
happening inside 
the application

Apply stats from 
production

Monitor the 
system 
end-to-end

Understand the 
application 
characteristics

Turn raw data into 
actual knowledge

Troubleshoot 
automatically by 
connecting the dots

Focus on the root 
cause, not on the 
manifestation

Work across stages



Be proactive and push to the left!
Waiting for tickets from customers is expensive.

Load tests are slow, too late, and too expensive.

Issues need to be identified early and automatically.



Never go blind 
again!



Metis
Source code 
integration

On-demand 
analysis

Pull Request 
analysis

Database 
observability

Query and 
database activity 

visibility

We got all your 
bases covered!



Source code integration
Web server integration

● Open Telemetry
● Capturing trace and REST calls

ORM integration

● Instrumenting SQL queries
● Observing all connectivity

SQL driver integration

● Capturing all database interactions



Pull Request analysis



Observability



Summary

Database may 
break

● Bugs
● ORM quirks
● Database 

inefficiency

You need to be 
proactive

● Load tests 
are too late

● Constant 
monitoring is 
needed

Metis covers all of 
that

● App 
integration

● Pull requests
● Observability
● Safety



Q&A



https://www.metisdata.io/

Thank you!

https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://www.metisdata.io

