
Building a Scalable Multi-Tenant 
Frontend Architecture for a B2B 

E-Commerce Platform

Guilherme Dalla Rosa



󰞴 CTO & Co-Founder @

📍 London, UK

󰞵 17 years in the industry

👋 Hello, I’m Guilherme

Let’s connect!

linkedin.com/in/guidr

x.com/gui_dr

github.com/guidr

linktr.ee/guidr



🔗 Explore more at https://mercloud.io

B2B E-Commerce SaaS Platform

Designed to cater to the complex needs of enterprises 
selling to other enterprises by providing a direct online 
sales channel to customers.

Our customers:

🏭 Manufacturers & Suppliers

🚚 Distributors

🛒 Wholesalers

🚢 Importers

https://mercloud.io/en


What is a B2B E-Commerce?

An electronic framework that facilitates 
business transactions between multiple 
enterprises in the supply chain.

💵 Customized pricing models

💸 Complex tax regimes

🏷 Targeted discounts

📦 Bulk transactions

🏅 Exclusive products

✅ Multi-layered approval processes

The goal is often to establish long-term 
relationships rather than one-time 

transactions.



Who are the Customers?



Product Supply Chain



Where We Started



Our MVP Architecture



Constraints 😨
● Replicated stacks for each customer - High costs 💸
● Slow onboarding of tenants - Hard to fully automate

● Complicated infrastructure - Challenging to deliver new features

● Slow deployment - Too many stacks to update and invalidate cache

● Difficult to monitor

● Poor performance



● Increased scalability 

● Reduced management overhead

● Faster onboarding experience

● Quicker deployments

● Better cache invalidation

● Lower latency - Our customers are spread around the globe

● Better observability

Rebuild the storefront application to 
modernise it and support the 
increasing customer base.

Re-imagining our Architecture 󰥚



The Solution

Create a multi-tenant architecture!



What is a Multi-Tenant Architecture?

“ It’s a software architecture where a single 
instance of the software runs on a server and 
serves multiple customers, known as “tenants”, 
allowing for data isolation, scalability, and 
resource optimization across various clients 
within the same infrastructure.



Tenancy Models



Isolation Strategies

https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/considerations/tenancy-models#tenant-isolation

https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/considerations/tenancy-models#tenant-isolation


Benefits of a Multi-Tenant Architecture
💰 Cost Efficiency: Shared resources among tenants

📈 Scalability: Horizontal scaling to accommodate more tenants

🛠 Simplified Management: One pipeline to rule ‘em all allowing quick onboarding 

🔐 Security and Compliance: Centralized management ensures uniform policies

󰞵 Developer Productivity: Single codebase

󰝊 Business Agility: Quickly adapt to new demands and rapid launching of features



Technology Choices

🚀 Deploy to󰳕Build on

󰠁 Great DX: Zero config, simplified routing, hot code reloading

🛠 Rich Built-in Features: SSR, SSG and ISR

⚛ React Ecosystem: Our team already had experience on React

⚡ Performance Optimization: Automatic code splitting, image optimization, prefetching

🌎 Robust Community and Ecosystem



● Global Edge Network

● Serverless Functions

● Managed scalability

● Observability as priority

● Multi-AZ / Automatic failover

● Automatic cache invalidation 

and purging on deployments

Compute at the Edge

● Serverless-first approach



Serverless, in a nutshell 🥜
● A way of running applications in the cloud

● Of course, there are servers... we just don't have to manage them

● We pay (only) for what we use

● Small units of compute (functions), triggered by events

Credit: Luciano Mammino (https://loige.co)

With benefits 🎁
● More focus on the business logic (generally)

● Increased team agility (mostly)

● Automatic scalability (sorta)

● Not a universal solution, but it can work well in many situations!

https://loige.co


The Idea



The Challenges



Mapping Domains to Tenants



Mapping Domains to Tenants







API Limits?

https://twitter.com/vercel_changes/status/1486041800129323013

https://twitter.com/vercel_changes/status/1486041800129323013


Identifying the Tenant

company-B.com

company-C.com

Who’s the tenant for 
that domain?



Identifying the Tenant



Identifying the Tenant



Routing



Caching Page Outputs

send the 
rendered page



Incremental Static Regeneration (ISR)

Tenant A

Tenant B



Tenant-based Routing



example.com/tenant-A/product/somethingexample.com/tenant-A/product/something



https://github.com/vercel/next.js/discussions/17260

https://github.com/vercel/next.js/discussions/17260




Solution: URL Rewrites



example.com/product/something





Source Code

github.com/guidr/nextjs-multi-tenant

https://github.com/guidr/nextjs-multi-tenant


Vercel Platforms Starter Kit
https://github.com/vercel/platforms

The Platforms Starter Kit is a full-stack Next.js app with 
multi-tenancy and custom domain support. Built with Next.js 
App Router, Vercel Postgres and the Vercel Domains API.
“

✅ Domain based routing

✅ URL rewrites using middleware

✅ Vercel Domains API

https://github.com/vercel/platforms


Where we Landed - MerCloud’s Architecture Overview



Outcomes

🚀 Massive improvements in performance

🌐 Lower latency: Servers are closer to the users

󰝊 Increased dev team agility

☁ No infrastructure management overhead

🤖 Easier to onboard new tenants (and fully automated!)



● Focus on business value, adopt tools and technologies that help you do that!

● Take advantage of strategies like Jamstack and ISR

● Be careful with Server Side Rendering (it slows down page load)

● Observability is a MUST
○ Tenant-aware
○ Consumption metrics: Who’s using what and how much?

● Do not do early optimization
○ Use metrics to drive it

Lessons Learned

https://youtu.be/oMo8DVwGSXY?t=470


Thanks!

linkedin.com/in/guidr

x.com/gui_dr

github.com/guidr

https://mercloud.io

https://mercloud.io

