Sharing secret keys in Docker containers and K8s

José Manuel Ortega
Security researcher

Implementing

DevSecOps :
Docker... Kubernetes

uide to Operate in the DevOps Environment
and Monitoring Container Applications

JOSE MANUEL ORTEGA CANDEL

Getting Started with DevSecOps

Container Platforms

Managing Containers and Docker Images
Getting Started with Docker Security

Docker Host Security

Docker Images Security

Auditing and Analyzing Vulnerabilities in Docker
Containers

8. Managing Docker Secrets and Networking

9. Docker Container Monitoring

10. Docker Container Administration

11. Kubernetes Architecture

12. Kubernetes Security

13. Auditing and Analyzing Vulnerabilities in
Kubernetes

14. Observability and Monitoring in Kubernetes

Noaroh=

15 Grafana

ﬂ‘ l===l
RANCHER
docker

podman

@cdlair

/ Falco
? e

trlvg
kube-bench

kube-hunter ku be rnetes

Jose Manuel Ortega
Software engineer,
Freelance

1.Challenges of security and secret keys in containers

2.Best practices for saving and securing distribution of
secrets in Docker Containers

3.Managing secrets in Kubernetes using volumes and
sealed-secrets

4.0Other tools for distributing secrets in containers

Challenges of security and secret keys in containers

THE TWELVE-FACTOR APP

INTRODUCTION

In the modern era, software is commonly delivered as a service: called web apps, or software-as-a-service. The twelve-factor
app is a methodology for building software-as-a-service apps that:

» Use declarative formats for setup automation, to minimize time and cost for new developers joining the project;

« Have a clean contract with the underlying operating system, offering maximum portability between execution
environments;

¢ Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems administration;

* Minimize divergence between development and production, enabling continuous deployment for maximum agility;

* And can scale up without significant changes to tooling, architecture, or development practices.

The twelve-factor methodology can be applied to apps written in any programming language, and which use any
combination of backing services (database, queue, memory cache, etc).

Challenges of security and secret keys in containers

e Secrets play a critical role in storing sensitive data separately from
application code. This includes data such as passwords,
hostnames, SSH keys, and more.

e Our application requires a database connection. To do this, it
needs a hostname, username, and password. Furthermore, there's
a different database server for development, testing, and
production.

e With secrets, each environment can provide its own database
information to the applications.

Challenges of security and secret keys in containers

secret
manager

PASSWORD2
VALOR2 '\

App 3

How Docker manages secrets

Docker's implementation of secrets uses the following
features:

. Secrets are created and managed separately from
applications.

Follows principles of least privileged and need-to-know
access.

Flexibility to store a variety of different data types.

How Docker manages secrets

Raft Consensus Group

x@ E Internal Distribution Store))

‘ :g;i MANAGER MANAGER MANAGER

WEB Ul

External

App

_
= =&
e 2
Worker Worker Worker

i
1
|
d

How Docker manages secrets

$ docker swarm init --advertise-addr
<MANAGER-IP>

$ docker secret create my_secret
/path/to/secret/file

e /run/secrets/<secret_name>

C

How Docker manages secrets

create my_secret_data

UPDATED
crbbfdbwgrsz2e9r4x5£fg2t jx ago 7 seconds ago

(local) root@
docker service create

1

5 cret_data redis:alpine
Kh8gcscx76vimnOmé4crShgbrl

bverall progr 1 out of 1 tasks
/1l: running

verify: Service converged

How Docker manages secrets

COMMAND) STAT
Up 21 minut

(local)
ntainer ex S (ps ——filter name=redis

(local)

How Docker manages secrets

=

error: ¢

How Docker manages secrets

NT STATE
3 minutes
workerl i

name=redis -q)
file or dir

Best practices for saving and securing distribution of
secrets in Docker Containers

$ docker service rm redis
redis

(local) root(@l92.168.0.28 ~
$ docker secret rm my_secret_data
y_secret_data

(local) root(@l92.168.0.28
S docker secret 1s
ID NAME DRIVER

(local) root@l92.168.0.28 ~

$ docker secret rm my_secret

C

Best practices for saving and securing distribution of
secrets in Docker Containers

$ docker service create

--name my_app

--secret
source=my_secret,target=/different/path/to/secret/file,mode

=0400

Best practices for saving and securing distribution of
secrets in Docker Containers

version: '3.1"'
services:
my_app:
image: my_app:latest
secrets:
- my_external_secret
- my_file_secret
secrets:
my_external_secret:
external: true
my_file secret:
file: /path/to/secret/file.txt

Best practices for saving and securing distribution of
secrets in Docker Containers

$ docker stack deploy -c docker-compose.ymi
secrets1
Creating service secrets1_viewer

$ docker logs $(docker ps -aqn1 -f status=exited)

my_secret

Managing secrets in Kubernetes

secret.yvaml

apiVersion: vi
kind: Secret
metadata:
name: my-secret
: Opaque

username: anNtaXRo
password: bX1zZWNyZXRwYXNzd29yZA==%
- X create -f secret.yaml}j

X - get secrets
NAME TYPE DATA AGE
default-token-hsvnc kubernetes.io/service-account-token 3
my-secret Opaque

¥

Managing secrets in Kubernetes using volumes

apiVersion: v1
kind: Pod
metadata:

name: volume-pod
spec:

containers:

- name: express-test

image: lukondefmwila/express-test:latest

Managing secrets in Kubernetes using sealed-secrets

O
GitHub

5. Checkin

SealedSecret
YAML manifest

3. Create YAML
manifests with

1. Deploy controller

oy

4. Deploy SealedSecret

e

Amazen EXS

5

\

namespace: kube-system

Sealed Secrets

Controller 2. Create
. Private/Public
: Key Pair
i

Watch E 4. Unseal SealedSecret
| and Create Secret
|
v
b SealedSecret
CRD

namespace: octany

Managing secrets in Kubernetes using sealed-secrets

apiVersion: v1
kind: Secret
metadata:

name: my-secret
type: Opaque
data:

username: dXNlcg==

password: cGFzc3dvemQ=

Managing secrets in Kubernetes using sealed-secrets

kubeseal --cert=public-key-cert.pem --format=yaml <
secret.yaml > sealed-secret.yaml

e https://qithub.com/bitnami-labs/sealed-secrets/releases

kubeseal-0.18.5-darwin-amdé4.tar.gz
@kubeseal-0.18.5-darwin-amdé4.tar.gz.slg
@kubeseal-0.18.5-darwin-armeé4.tar.gz
@kubeseal-0.18.5-darwin-armé4.tar.gz.slg

@kubeseal-0.1 8.5-linux-amde64.tar.gz

17.8 MB
96 Bytes
17.1 MB
96 Bytes

17.9 MB

8 days ago
8 days ago
8 days ago
8 days ago

8 days ago

https://github.com/bitnami-labs/sealed-secrets/releases

Managing secrets in Kubernetes using sealed-secrets

apiVersion: bitnami.com/v1alpha1
kind: SealedSecret
metadata:
creationTimestamp: null
name: my-secret
namespace: default
spec:
encryptedData:

password: AgBvASWMunIZ5rF9...

username: AgCCo8eSORsCbeJSoRs/... %

Managing secrets in Kubernetes using sealed-secrets

$ kubectl apply -f sealed-secret.yaml

- Describe(
my-secret
default
<none>
: <none>

: Opaque

: 8 bytes
: 4 bytes

<secret> | <describe>

Other tools for distributing secrets in containers

e Hashicorp Vault rHJ Hash|Corp

e Keywhiz

e Akeyless Vault KeyWhiz
®

Cloud Provider solutions (AWS Secrets
Manager, GCP Secret Manager)

Hashicorp Vault

HTTP/S API
Token Store Policy Store Audit
Core . Broker
Rollback Mgr. Expiration Mgr.
kT :
r:u Path Routing Audit Device |
m
System secret Auth Audit Device |
Backend Engine Method

Storage Backend

Hashicorp Vault

/7
7,

&

Key Shares

Master Key Encryption Key

T~ 2
/

Hashicorp Vault

Q/[;%;e::(: g:t: |tt0 Vault decrypts the encrypted
— encrypted = — data for the app to use
WV — W —
~ | App data | Decrypted app data
> \ > l > \
< — -« —
App Encrypted app data Encrypted app data App
Encrypted data can C 3
be stored in Vault or —
in other data store C
S
"

Hashicorp Vault

V Vault x [i=E

5 V Vault bl -

< cC @ ® 127.0.0.1:8200/ui/vault/secrets

A4

Secrets Policies Tools

Secrets Engines

cubbyhole/

© 2019 HashiCorp Vault1.1.1 Upgrade to Vault Enterprise

&« c @® 127.0.0.1:8200/ui/vault/secr

w In @ e

Secrets Access Policies Tools

\4

Status v

secret

key

key

Enablenew engine >

KEY VALUE

key

Documer
© 2019 HashiCorp Vault1.1.1

- N

® Status v

JSON Copysecret Createnew version

Upgrade to Vault Enterprise Do

Version1)

INn @ ©

Deletesecret >

History >

Hashicorp Vault

The key features of the Vault are:

It encrypts and decrypts data without storing it.
. Vault can generate secrets on-demand for some
operations, such as AWS or SQL databases.
. Allows replication across multiple data centers.
. Vault has built-in protection for secret revocation.
. Serves as a secret repository with access control details.

Keywhiz

® Keywhiz helps with infrastructure secrets, GPG keyrings,

and database credentials, including TLS certificates and
keys, symmetric keys, API tokens, and SSH keys for
external services.

Keywhiz Server

Keysync

Keywhiz CLI

Keywhiz automation API

O O O O

Keywhiz

ADDING A SECRET
Using Keywhiz CLI

$ keywhiz.cli --devTrustStore --user keywhizAdmin login
$ keywhiz.cli add secret --name mySecretName < mySecretFile

Using Keywhiz automation API

The automation API requires a client certificate and automationAllowed=true inthe clients DB table. For development purpose, you
can use the pre-generated client.p12 keystore:

$ cat request.json

{
"name": "example.keytab",
"description”:"example kerberos keytab",
"content":"a2V5dGFiIGNvbnR1bnQ="",
"metadata":{"owner":"root", "group":"root", "mode":"0400"}
}

$ curl --cert ./server/src/test/resources/clients/client.pl12:ponies -H "Content-Type:application/json" -d @r
equest.json https://localhost:4444/automation/secrets/

Keywhiz

The key features of Keywhiz are:

e Helps with infrastructure secrets, GPG keyrings, and
database credentials, including TLS certificates and keys,
symmetric keys, APl tokens, and SSH keys for external
services.

e Keywhiz Server provides JSON APIs for collecting and
managing secrets.

o It stores all secrets in memory only.

AWS Secrets Manager

Admin

Personnel

database

AWS Secrets Manager

The key features of AWS Secrets Manager are:

e Encrypts and decrypts secrets, transmiting securely over TLS.

e Provides client-side caching libraries to improve the
availability and reduce the latency of using your secrets.

e You can configure Amazon VPC (Virtual Private Cloud)
endpoints to keep traffic within the AWS network.

Azure Key Vault

Azure Active Directory

Authenticate

1V

2 Your App

- Deploy

Developer

Certificate Store lr@

Azure VM

Access

Azure Key Vault

Azure Key Vault @

Your Key Vault

Certificate

Certificate

‘ metadata
. -

Akeyless Vault

Your Secrets and Keys

Or Or Or
SAML

Universal identity

OpenlD
Azure AD i
AWS IAM
Configuration Management | | £
0t |
IT Operations

cveD Containers -
Q)
5 2y

o 2 E .
3 (X‘Qg DevOps Engineer

Developer

Akeyless Vault _F

The platform supports two more pillars: W

e Zero-Trust Application Access by providing unified
authentication and just-in-time access credentials, allowing
you to secure the perimeter of applications and infrastructure.

e Encryption as-a-Service, allows customers to protect
sensitive personal & business data by applying FIPS 140-2
certified app-level encryption.

Conclusions

e Secrets are an important tool for any container-based
architecture because they help us achieve the goal of
keeping code and configuration separate.

e Manage secrets in secure storage

