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Challenges of security and secret keys in containers

● Secrets play a critical role in storing sensitive data separately from 
application code. This includes data such as passwords, 
hostnames, SSH keys, and more.

● Our application requires a database connection. To do this, it 
needs a hostname, username, and password. Furthermore, there's 
a different database server for development, testing, and 
production.

● With secrets, each environment can provide its own database 
information to the applications.
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How Docker manages secrets

Docker's implementation of secrets uses the following 
features:

● Secrets are created and managed separately from 
applications.

● Follows principles of least privileged and need-to-know 
access.

● Flexibility to store a variety of different data types.
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How Docker manages secrets

$ docker swarm init --advertise-addr 
<MANAGER-IP>

$ docker secret create my_secret 
/path/to/secret/file

● /run/secrets/<secret_name>
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Best practices for saving and securing distribution of 
secrets in Docker Containers

$ docker secret rm my_secret



Best practices for saving and securing distribution of 
secrets in Docker Containers

$ docker service create
  --name my_app
  --secret 
source=my_secret,target=/different/path/to/secret/file,mode
=0400



Best practices for saving and securing distribution of 
secrets in Docker Containers

version: '3.1'
services:
  my_app:
    image: my_app:latest
    secrets:
     - my_external_secret
     - my_file_secret
secrets:
  my_external_secret:
    external: true
  my_file_secret:
    file: /path/to/secret/file.txt



Best practices for saving and securing distribution of 
secrets in Docker Containers

$ docker stack deploy -c docker-compose.yml 
secrets1
Creating service secrets1_viewer

$ docker logs $(docker ps -aqn1 -f status=exited)
my_secret
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Managing secrets in Kubernetes using volumes
apiVersion: v1
kind: Pod
metadata: 
  name: volume-pod
spec:
  containers:
  - name: express-test
    image: lukondefmwila/express-test:latest
    volumeMounts:
    - name: secret-volume
      mountPath: /etc/config/secret
  volumes:
  - name: secret-volume
    secret:
      secretName: my-secret
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Managing secrets in Kubernetes using sealed-secrets

apiVersion: v1

kind: Secret

metadata:

  name: my-secret

type: Opaque

data:

  username: dXNlcg==

  password: cGFzc3dvcmQ=



Managing secrets in Kubernetes using sealed-secrets

kubeseal --cert=public-key-cert.pem --format=yaml < 
secret.yaml > sealed-secret.yaml

● https://github.com/bitnami-labs/sealed-secrets/releases

https://github.com/bitnami-labs/sealed-secrets/releases


Managing secrets in Kubernetes using sealed-secrets

apiVersion: bitnami.com/v1alpha1

kind: SealedSecret

metadata:

  creationTimestamp: null

  name: my-secret

  namespace: default

spec:

  encryptedData:

    password: AgBvA5WMunIZ5rF9...

    username: AgCCo8eSORsCbeJSoRs/...



Managing secrets in Kubernetes using sealed-secrets

$ kubectl apply -f sealed-secret.yaml



Other tools for distributing secrets in containers

● Hashicorp Vault
● Keywhiz
● Akeyless Vault
● Cloud Provider solutions (AWS Secrets 

Manager, GCP Secret Manager)
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Hashicorp Vault

The key features of the Vault are:

● It encrypts and decrypts data without storing it.
● Vault can generate secrets on-demand for some 

operations, such as AWS or SQL databases.
● Allows replication across multiple data centers.
● Vault has built-in protection for secret revocation.
● Serves as a secret repository with access control details.



Keywhiz

● Keywhiz helps with infrastructure secrets, GPG keyrings, 
and database credentials, including TLS certificates and 
keys, symmetric keys, API tokens, and SSH keys for 
external services.
○ Keywhiz Server
○ Keysync
○ Keywhiz CLI
○ Keywhiz automation API



Keywhiz



Keywhiz

The key features of Keywhiz are:

● Helps with infrastructure secrets, GPG keyrings, and 
database credentials, including TLS certificates and keys, 
symmetric keys, API tokens, and SSH keys for external 
services.

● Keywhiz Server provides JSON APIs for collecting and 
managing secrets.

● It stores all secrets in memory only.
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AWS Secrets Manager

The key features of AWS Secrets Manager are:

● Encrypts and decrypts secrets, transmiting securely over TLS.
● Provides client-side caching libraries to improve the 

availability and reduce the latency of using your secrets.
● You can configure Amazon VPC (Virtual Private Cloud) 

endpoints to keep traffic within the AWS network.



Azure Key Vault
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Akeyless Vault

The platform supports two more pillars:

● Zero-Trust Application Access by providing unified 
authentication and just-in-time access credentials, allowing 
you to secure the perimeter of applications and infrastructure.

● Encryption as-a-Service, allows customers to protect 
sensitive personal & business data by applying FIPS 140-2 
certified app-level encryption.



Conclusions

● Secrets are an important tool for any container-based 
architecture because they help us achieve the goal of 
keeping code and configuration separate.

● Manage secrets in secure storage


