
Edit, Debug, and Secure K8s Manifests
Why it’s important and how to get it right

Ole Lensmar / kubeshop.io / ole@kubeshop.io

Agenda

- Manifest 101 - what are they?

- The manifest lifecycle

- Creating / validating manifests

- Templating manifests

- Tooling

- Best Practices

What are Kubernetes manifests?

Specification of a Kubernetes API object in JSON or YAML format.

A manifest specifies the desired state of an object that Kubernetes will maintain when
you apply the manifest. A configuration file can contain multiple manifests.

K8s cluster

Manifest file(s)
(yaml/json)

Kubernetes API
Objects

apply

Basic Manifest Structure

- apiVersion - the API version

- kind - the type of K8s object

- metadata

- name - the name of the object

- namespace - the target namespace

(optional)

- labels and annotations (optional)

- kind-specific content
- specifies the desired state of the object to

be created

Example Service

Manifest versions and schemas

- The apiVersion and kind of the manifest specifies which schema to use

- The schema defines the “content” of the manifest - i.e. the state of the described

resource - properties, arrays/maps, types, enumerations, etc.
- Uses JSON Schema as used by OpenAPI 3.0 - with certain limitations

- API documentation available at kubernetes.io

- Not to be confused with the version of Kubernetes itself!
- Specific versions of Kubernetes support specific apiVersions

- Example: Kubernetes 1.24 supports both apiVersion “v1” and “v1beta1” of the CronJob kind

- (“v1beta1” will be removed in Kubernetes 1.25)

Manifest relationships

- K8s objects often reference other objects
- Name references
- Label-based selectors
- Object references

- Once deployed to your cluster

Kubernetes adds a status property to

the manifest describing the current

state of the object

- continuously updated by the

Kubernetes system and

components

- (not for all object types)

Manifest Status

Kubernetes

The Kubernetes Manifest lifecycle

Create Edit Debug/TroubleshootApply DeleteValidate

Manifest (files/git/etc)

Kubernetes API Object

Create/U
pdate

hot-fix

Manifest (stored in etcd)

Creating / editing manifests

- Create / edit in your IDE
- Copy/paste from another manifest (if you dare..)

- Use plugins / code-snippets / generators

- Use kubectl

kubectl create deployment nginx
--image=nginx -o yaml
--dry-run=client

Validating manifests

1. Syntax validation
- Valid YAML/JSON

2. Schema validation
- Required & Valid properties / values

3. Link validation
- Valid references to other objects

4. Policy validation:
- Local, Performance, Security, etc.

Validating manifests with OPA (Open Policy Agent)

● OPA Used by several open-source projects for Kubernetes configuration validation
○ Applied either before deploying or as part of the deployment process

○ Rules written in rego

● Can be used to validate any configuration aspect of a resource
■ Names, labels
■ Network configuration
■ Resource allocation
■ Custom - “Best practices”

● Many predefined rules available (GitHub, etc)
○ VS-Code plugin available for creating your own

Finally - deploying manifests to your cluster

- Manually: kubectl / helm / kustomize / etc

- Automated: CI/CD - GitOps

Let’s have a look!

Manifest Templating

- Need: have a common set of manifests that

can be deployed to different environments with

different parameters

- Different approaches:
- YAML-native (Kustomize, yq)

- Custom templating (Helm, Jsonnet, etc)

- Generate from code (cdk8s, dekorate, etc)

- Abstraction layers (Acorn, etc)

Manifests

Dev

Stage

Prod

YAML-Native : Kustomize

- “Kubernetes native configuration

management” - kustomize.io

- Uses plain YAML for templating/patching

- Built into kubectl

Base
manifest(s)

Overlays/
patches

Final
manifests

Kustomize

Custom Templating: Helm

- Helm uses custom templates packaged into
“Charts” for packaging applications

- A “Helm Chart” produces a set of
Kubernetes manifests to be deployed to a
cluster

- Helm Charts can be parameterized using
values file(s) as configuration input

- Helm Charts are distributed/consumed via
“Helm Repositories”

Using Helm and Kustomize together

- Helm and Kustomize
complement each other
nicely!

- Use Helm to package
your application

- Use Kustomize to
manage runtime
configuration

Templating and the Manifest lifecycle

- Create/Edit as before - using your favorite IDE / Code editor

- “Dry-run” templating tools to perform validations

- Required to inspect / validate generated manifests
- Compliance with target Kubernetes version

- Policies / Security

- Cluster references

- Automate as part of pre-deployment checks

Kubernetes

The Kubernetes Manifest lifecycle - revisited

Create Edit Debug/TroubleshootApply Delete(Preview) Validate

Manifest (files/git/etc)

Kubernetes API Object

Create/U
pdate

hot-fix

Manifest (stored in etcd)

Short Kustomize Demo

Tooling for the Kubernetes Manifest lifecycle

Manifest Lifecycle Kubernetes Object Lifecycle

Create Edit Preview Validate Apply/D
eploy

Create/
Update Debug Delete

kubectl X X X X

IDEs + plugins
(VS-Code, Intellij, etc) (X) X (X) (X) (X) (X) (X)

Validation tools
(Trivvy, Kubescape, etc) X

Templating tools
(Helm, Kustomize, etc) X X X X X

Cluster inspection tools
(Lens, k9s, etc) (X) X X X

Kubernetes IDEs
(Monokle, etc) X X X X X X X X

1. Understand manifests and their lifecycle

2. Use latest stable API Version for your manifests

3. Keep manifests simple (do not specify default values unnecessarily)

4. Define project/team policies for resource configurations and metadata

5. Use templating - when you need it

6. Validate manifests before you deploy

7. Automate manifest validation and deployment as part of CI/CD

8. Adopt GitOps - when everyone understands the implications

Getting it right - Best Practices

Q&A

Thanks for listening!

ole@kubeshop.io

