
Building Real-Time Pulsar Apps
on K8

Tim Spann | Developer Advocate

Tim Spann
Developer Advocate

Tim Spann, Developer Advocate at StreamNative

● FLiP(N) Stack = Flink, Pulsar and NiFi Stack

● Streaming Systems & Data Architecture Expert

● Experience:
○ 15+ years of experience with streaming technologies including Pulsar,

Flink, Spark, NiFi, Big Data, Cloud, MXNet, IoT, Python and more.

○ Today, he helps to grow the Pulsar community sharing rich technical
knowledge and experience at both global conferences and through
individual conversations.

FLiP Stack Weekly

This week in Apache Flink, Apache Pulsar, Apache
NiFi, Apache Spark and open source friends.

https://bit.ly/32dAJft

https://bit.ly/32dAJft

streamnative.io

Passionate and dedicated team.

Founded by the original developers of

Apache Pulsar.

StreamNative helps teams to capture,

manage, and leverage data using

Pulsar’s unified messaging and

streaming platform.

Apache Pulsar adoption is
being driven by
organizations seeking
cloud-native architectures
and new uses cases.

Microservices

Apache Pulsar - Built for Containers / Modern Cloud

Cloud Native

Hybrid & Multi-Cloud Containers

Apache Pulsar + Kafka K8

https://docs.streamnative.io/platform/v1.3.0/quickstart

https://docs.streamnative.io/platform/v1.3.0/quickstart

● “Bookies”

● Stores messages and cursors

● Messages are grouped in

segments/ledgers

● A group of bookies form an “ensemble” to

store a ledger

● “Brokers”

● Handles message routing and

connections

● Stateless, but with caches

● Automatic load-balancing

● Topics are composed of

multiple segments

●

● Stores metadata for both Pulsar

and BookKeeper

● Service discovery

Store
Messages

Metadata & Service
Discovery

Metadata & Service
Discovery

Metadata Store

(ZK, RocksDB, etcd, …)

Pulsar Cluster

Pulsar Cluster

 CLUSTER

Global MetaData
Configuration Store

ZK3

ZK2

ZK1

Local
MetaData
Quorum

Bookie 0 Bookie 1 Bookie 2

BookKeeper
Bookie

Ensemble

Pulsar Broker 0 Pulsar Broker 1 Pulsar Broker 2

Apache Pulsar

Apache BookKeeper

Offloader & Tiered Storage

Offloading

Broker 0

Producer Consumer

Broker 1 Broker 2

Bookie 0 Bookie 1 Bookie 2 Bookie 3 Bookie 4

S S S S

T
1

T
2

T
3

T
4

T
0

S

● Consume messages from one
or more Pulsar topics.

● Apply user-supplied
processing logic to each
message.

● Publish the results of the
computation to another topic.

● Support multiple
programming languages
(Java, Python, Go)

● Can leverage 3rd-party
libraries

Pulsar Functions

from pulsar import Function
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import json

class Chat(Function):
 def __init__(self):
 pass

 def process(self, input, context):
 fields = json.loads(input)
 sid = SentimentIntensityAnalyzer()
 ss = sid.polarity_scores(fields["comment"])
 row = { }
 row['id'] = str(msg_id)
 if ss['compound'] < 0.00:
 row['sentiment'] = 'Negative'
 else:
 row['sentiment'] = 'Positive'
 row['comment'] = str(fields["comment"])
 json_string = json.dumps(row)
 return json_string

Entire Function

Pulsar Python
NLP Function

https://github.com/tspannhw/pulsar-pychat-function

https://github.com/tspannhw/pulsar-pychat-function

Pulsar Functions, along with Pulsar IO/Connectors, provide a powerful API for ingesting, transforming,
and outputting data.

Function Mesh, another StreamNative project, makes it easier for developers to create entire
applications built from sources, functions, and sinks all through a declarative API.

K8 Deploy

Apache Pulsar Resources

https://github.com/tspannhw/FLiPN-Conf42-KubeNative-2022

