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Istio current Architecture
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Gateway for ingress into the mesh
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…and for egress out from the mesh
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Let's take a step back
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Let’s add mTLS
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Manage the certificates, somehow
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We also want other application layer smarts
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All sorts of policies

🏁
Quality of Service

● Timeouts

● Retries

● Circuit breakers

● Traffic allocation

🔒
Authorization

● Local authorization

● 3rd party lookups

● Quotas and rate limiting 

🚦
Traffic shaping

● Content-based routing

● Canaries

● A/B testing



All this logic needs to be enforced at the “edge”
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In the real world, we use “sidecar” proxies
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This is how we came here
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Istio’s Current Data Plane
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Sidecars

● Improvement over previous alternatives to get benefits from mesh
● While still useful and important, sidecars have some complications:

○ Invasive
■ Requires modifying the workload–can’t be hot-inserted
■ Difficult install/uninstall/upgrade, requires restarts

○ Breaks some applications with broken HTTP implementations
○ Over-provisions resources for sidecars



Ambient Mesh Datapath Goals

● Non-disruptive to applications
○ Hot-insertion without modifying workload
○ Low risk of breaking traffic
○ Transparent, zero-downtime, upgrades

● Compatibility with sidecar-based Istio 
○ Traffic interoperable with pods using the traditional sidecar
○ Smooth upgrade path from mTLS-only to full Istio

● Simple check-box enablement/disablement



Architecture

● Removes sidecar and splits proxy into two parts
● Treat mesh as two layers: Secure Overlay and L7 Processing
● Secure overlay implemented by a per-node shared ztunnel 

○ ztunnel as a DaemonSet
○ Authentication and encryption to other ztunnels or waypoint proxies
○ L4 policies and telemetry

● Full L7 Istio implemented by a full L7 waypoint proxy
○ L7 policies and telemetry 

● HBone provides authentication and encryption without breaking applications



Ambient Mesh Layers

All features of the Secure Overlay plus…
● Traffic Mgmt: HTTP routing & load balancing, Circuit breaking, 

Rate limiting, Fault injection, Retry, Timeouts, …
● Security: Rich authorization policies
● Observability: HTTP metrics, Access Logging, Tracing

Streamlined, low resource, high performance with zero trust
● Traffic Mgmt: TCP Routing
● Security: mTLS tunneling, Simple authorization policies
● Observability: TCP metrics & logging
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Secure Overlay
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L7 Policies
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Deploying Ambient Mesh



Traditional Istio Deployment

● Proxy loaded as sidecar with shared networking in pod
● iptables redirects the workload’s traffic in and out of the sidecar proxy
● Node networking stack unmodified
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Traditional Istio Deployment

● Proxy loaded as sidecar with shared networking in pod
● iptables redirects the workload’s traffic in and out of the sidecar proxy
● Node networking stack unmodified
● Sidecar insertion makes modifications to workload pod that requires restart
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Ambient Mesh Deployment

● CNI redirects traffic from the workload to the ztunnel to provide 
non-bypassability

● Allows hot-enablement of Istio through dynamic redirect

W1 W2 ztunnel

Network CNI

eth0



HBONE



Traditional Istio Proxy Traffic

● Each connection from the client creates a new TCP connection between the 
proxies

● mTLS-tunneled traffic uses the same port numbers as the original
○ Sniffing code in Envoy determines whether traffic is encrypted or not
○ Breaks server-speaks-first protocols (e.g., MySQL) when using Permissive mTLS
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● All traffic tunneled through a single mTLS connection using HTTP Connect
○ Fixes server-speaks-first protocols for Permissive mTLS
○ Amortizes cost of mTLS handshakes over multiple connections
○ Doesn’t require sniffing or metadata exchange hacks
○ Simplifies network policies, since Istio will use a single port

● Decouple mTLS encryption from the application
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Demo



apiVersion: 

networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

  name: service-b-destination

spec:

  host: service-b

  subsets:

  - name: v1

    labels:

      version: v1

  - name: v2

    labels:

      version: v2

Service A

service_b v2

service_b v1

service_b v1

service_b v1

Canary

95%

5%

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

  name:service-b

spec:

  hosts:

  - service-b

  Http:

  - route:

    - destination:

        host: service-b

        subset: v2

      weight: 5

    - destination:

        host: service-b

        subset: v1

      weight: 95

Istio Traffic Management



Gateway API OSS

A modern set of APIs for L4 and L7 Load-Balancing and Mesh in Kubernetes.

Evolution from Ingress and Istio, the Gateway API is designed to standardize how service 
networking is expressed.

8+ implementations (Google, Istio, +external vendors)
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Gateway foo HTTPRoute store

Service
foo-site

Domain
foo.example.com

TLS Certificates

Default Policies

/store/*

HTTPRoute site

/site/*

Service
foo-store v1

Service
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Store Developer 
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Cluster Operator

GatewayClass 
external
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Role Oriented Resource Model
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More expressive routing

kind: HTTPRoute
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
  name: foo-route
  namespace: foo
  labels:
    gateway: internal-gw
spec:
  hostnames:
  - "foo.com"
  rules:
  - matches:
    - headers:
        values:
          version: canary
    forwardTo:
    - serviceName: foo-v2
      port: 8080
  - forwardTo:
    - serviceName: foo-v1
      port: 8080

HTTPRoute
route2

Service
foo-v1host: foo.com

host: foo.com
“version: canary”

Service
foo-v2

Load Balancer



© 2020 Google LLC. All rights reserved.

More expressive routing

kind: HTTPRoute
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
  name: foo-route
  namespace: foo
  labels:
    gateway: internal-gw
spec:
  hostnames:
  - "foo.com"
  rules:
  - forwardTo:
    - serviceName: foo-v1
      port: 8080
      weight: 80
    - serviceName: foo-v2
      port: 8080
      weight: 20

HTTPRoute
route3

host: foo.com

Load Balancer
Service
foo-v1

Service
foo-v2

80%

20%



Gateway <-> Route 
Relationships
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Ambient Mesh Demo

● Basic Application with no Istio

● Easily Install ambient mesh - secure overlay
○ Customer enables ambient mesh to get mTLS
○ L4 authorization policies
○ Zero downtime, zero pod restarts

● Easily Install Ambient Mesh - L7 policies
○ Istio waypoint proxies are deployed and utilized
○ L7 Policies
○ Zero downtime, zero pod restarts

● Easily uninstall Istio
○ Zero downtime, zero pod restarts



Takeaways

● We expect ambient mesh to be the best fit for most users going forward 
● Sidecars still have their place and will continue to be supported

○ Applications that require dedicated resources
○ Sites that need customization (e.g., EnvoyFilter)
○ Regulated environments that expect their deployment model
○ Users that just like sidecars and don’t want to change

● Ambient and sidecars can be deployed together and interoperate
● “Experimental” code and announcement today
● Plan to release in the coming months
● Please contribute!



Thank You!
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