
Introduction to Istio
Ambient Mesh

Abdel SGHIOUAR
Twitter: @boredabdel

SPONSORS
Speaker: Abdel SGHIOUAR(@boredabdel)
Company: Google Cloud

Intro to Istio Ambient Mesh

Abdel SGHIOUAR
Senior Cloud Developer Advocate
Kubernetes Podcast co-host
CNCF Ambassador
Twitter: boredabdel@

Istio current Architecture

 Service B Service A

Data flow

Istio control planeControl flow

Cert
mgmt

 Proxy Proxy

HTTP, gRPC, TCP

mTLS

Policy enforcement

TelemetryRouting

Secure naming

Gateway for ingress into the mesh

 Service B Service A

Data flow

Istio control planeControl flow

Cert
mgmt

Policy enforcement

TelemetryRouting

Secure naming

 Proxy Proxy Ingress Gateway

📱
HTTP, gRPC, TCP

mTLS

JWT + TLS

mTLSPerimeter policy
enforcement

…and for egress out from the mesh

 Service B Service A

Data flow

Istio control planeControl flow

Cert
mgmt

Policy enforcement

TelemetryRouting

Secure naming

 Proxy Proxy Ingress Gateway

📱 ☁
 Egress Gateway

HTTP, gRPC, TCP

mTLS

JWT + TLS JWT + TLS

mTLSmTLSPerimeter policy
enforcement

Perimeter policy
enforcement

Let's take a step back

Service BService A

Data flow

HTTP, gRPC, TCP

Let’s add mTLS

Service BService A

Data flow

HTTP, gRPC, TCP

mTLS

Manage the certificates, somehow

Service BService A

Data flow

Control planeControl flow

Cert
mgmt

HTTP, gRPC, TCP

mTLS

We also want other application layer smarts

Service BService A

Data flow

Control planeControl flow

Cert
mgmt

HTTP, gRPC, TCP

mTLS

Policy enforcement

TelemetryRouting

Secure naming

All sorts of policies

🏁
Quality of Service

● Timeouts

● Retries

● Circuit breakers

● Traffic allocation

🔒
Authorization

● Local authorization

● 3rd party lookups

● Quotas and rate limiting

🚦
Traffic shaping

● Content-based routing

● Canaries

● A/B testing

All this logic needs to be enforced at the “edge”

Service BService A

Data flow

Control planeControl flow

Cert
mgmt

Proxy libProxy lib
HTTP, gRPC, TCP

mTLS

Policy enforcement

TelemetryRouting

Secure naming

In the real world, we use “sidecar” proxies

 Service B Service A

HTTP, gRPC, TCP

mTLS

Data flow

Control planeControl flow

Cert
mgmt

 Proxy Proxy

Policy enforcement

TelemetryRouting

Secure naming

This is how we came here

 Service B Service A

Data flow

Istio control planeControl flow

Cert
mgmt

 Proxy Proxy

HTTP, gRPC, TCP

mTLS

Policy enforcement

TelemetryRouting

Secure naming

Istio’s Current Data Plane

C1

Cluster

mTLS-Upgrade

Sidecar
Proxy

C2

Sidecar
Proxy

S1

Sidecar
Proxy

S2

Sidecar
Proxy

C3

Sidecar
Proxy

Sidecars

● Improvement over previous alternatives to get benefits from mesh
● While still useful and important, sidecars have some complications:

○ Invasive
■ Requires modifying the workload–can’t be hot-inserted
■ Difficult install/uninstall/upgrade, requires restarts

○ Breaks some applications with broken HTTP implementations
○ Over-provisions resources for sidecars

Ambient Mesh Datapath Goals

● Non-disruptive to applications
○ Hot-insertion without modifying workload
○ Low risk of breaking traffic
○ Transparent, zero-downtime, upgrades

● Compatibility with sidecar-based Istio
○ Traffic interoperable with pods using the traditional sidecar
○ Smooth upgrade path from mTLS-only to full Istio

● Simple check-box enablement/disablement

Architecture

● Removes sidecar and splits proxy into two parts
● Treat mesh as two layers: Secure Overlay and L7 Processing
● Secure overlay implemented by a per-node shared ztunnel

○ ztunnel as a DaemonSet
○ Authentication and encryption to other ztunnels or waypoint proxies
○ L4 policies and telemetry

● Full L7 Istio implemented by a full L7 waypoint proxy
○ L7 policies and telemetry

● HBone provides authentication and encryption without breaking applications

Ambient Mesh Layers

All features of the Secure Overlay plus…
● Traffic Mgmt: HTTP routing & load balancing, Circuit breaking,

Rate limiting, Fault injection, Retry, Timeouts, …
● Security: Rich authorization policies
● Observability: HTTP metrics, Access Logging, Tracing

Streamlined, low resource, high performance with zero trust
● Traffic Mgmt: TCP Routing
● Security: mTLS tunneling, Simple authorization policies
● Observability: TCP metrics & logging

Secure
Overlay
Layer

L7 Processing
Layer

Secure Overlay

C1

ztunnel

Cluster

HTTPS CONNECT Tunnel

ztunnel

C2 S1 S2 C3

L7 Policies

C1

Cluster

HTTPS CONNECT Tunnel

ztunnel

C2 S1 S2 C3

S Namespace

ztunnel

Waypoint
Proxy

Deploying Ambient Mesh

Traditional Istio Deployment

● Proxy loaded as sidecar with shared networking in pod
● iptables redirects the workload’s traffic in and out of the sidecar proxy
● Node networking stack unmodified

W1 Istio
Proxy

Linux Networking Stack

eth0W2

Traditional Istio Deployment

● Proxy loaded as sidecar with shared networking in pod
● iptables redirects the workload’s traffic in and out of the sidecar proxy
● Node networking stack unmodified
● Sidecar insertion makes modifications to workload pod that requires restart

W1 Istio
Proxy

Linux Networking Stack

eth0W2’ Istio
Proxy

Ambient Mesh Deployment

● CNI redirects traffic from the workload to the ztunnel to provide
non-bypassability

● Allows hot-enablement of Istio through dynamic redirect

W1 W2 ztunnel

Network CNI

eth0

HBONE

Traditional Istio Proxy Traffic

● Each connection from the client creates a new TCP connection between the
proxies

● mTLS-tunneled traffic uses the same port numbers as the original
○ Sniffing code in Envoy determines whether traffic is encrypted or not
○ Breaks server-speaks-first protocols (e.g., MySQL) when using Permissive mTLS

C1
ProxyC1 S1S1

Proxy

80/TCP

443/TCP

980/TCP

80/TCP

443/TCP

980/TCP

80/TCP

443/TCP

980/TCP

● All traffic tunneled through a single mTLS connection using HTTP Connect
○ Fixes server-speaks-first protocols for Permissive mTLS
○ Amortizes cost of mTLS handshakes over multiple connections
○ Doesn’t require sniffing or metadata exchange hacks
○ Simplifies network policies, since Istio will use a single port

● Decouple mTLS encryption from the application

C1
ProxyC1 S1S1

Proxy

80/TCP

443/TCP

980/TCP

80/TCP

443/TCP

980/TCP

15008/TCP

HBone

Demo

apiVersion:

networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: service-b-destination

spec:

 host: service-b

 subsets:

 - name: v1

 labels:

 version: v1

 - name: v2

 labels:

 version: v2

Service A

service_b v2

service_b v1

service_b v1

service_b v1

Canary

95%

5%

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name:service-b

spec:

 hosts:

 - service-b

 Http:

 - route:

 - destination:

 host: service-b

 subset: v2

 weight: 5

 - destination:

 host: service-b

 subset: v1

 weight: 95

Istio Traffic Management

Gateway API OSS

A modern set of APIs for L4 and L7 Load-Balancing and Mesh in Kubernetes.

Evolution from Ingress and Istio, the Gateway API is designed to standardize how service
networking is expressed.

8+ implementations (Google, Istio, +external vendors)

© 2020 Google LLC. All rights reserved.

bar Namespacefoo Namespace

Gateway

HTTPRoute

GatewayClass

Services

HTTPRoute

Services

Platform
Admin

Service
Owner

Service
Owner

Platform
Provider

What is the Gateway API?

Ingress

Service
Owner

Ingress

Service
Owner

Gateway foo HTTPRoute store

Service
foo-site

Domain
foo.example.com

TLS Certificates

Default Policies

/store/*

HTTPRoute site

/site/*

Service
foo-store v1

Service
foo-store v2

Store Developer

Site Developer

��🏽 ♀

Cluster Operator

GatewayClass
external

Infra Provider

Role Oriented Resource Model

© 2020 Google LLC. All rights reserved.

site Namespace
login HTTPRoute

store Namespace
infra Namespace

shared-gateway
Gateway

store HTTPRoute

login-v1
Service Pod

/login

PodPod

login-v2
Service PodPodPod

store
Service Pod

/store PodPod

foo-example-com
secret

home HTTPRoute

/*
PodPodPodhome

Service

https://foo.example.com

90%

10%

Cross-Namespace
Routing

Cluster Operator

Site Developer

Store Developer

© 2020 Google LLC. All rights reserved.

More expressive routing

kind: HTTPRoute
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
 name: foo-route
 namespace: foo
 labels:
 gateway: internal-gw
spec:
 hostnames:
 - "foo.com"
 rules:
 - matches:
 - headers:
 values:
 version: canary
 forwardTo:
 - serviceName: foo-v2
 port: 8080
 - forwardTo:
 - serviceName: foo-v1
 port: 8080

HTTPRoute
route2

Service
foo-v1host: foo.com

host: foo.com
“version: canary”

Service
foo-v2

Load Balancer

© 2020 Google LLC. All rights reserved.

More expressive routing

kind: HTTPRoute
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
 name: foo-route
 namespace: foo
 labels:
 gateway: internal-gw
spec:
 hostnames:
 - "foo.com"
 rules:
 - forwardTo:
 - serviceName: foo-v1
 port: 8080
 weight: 80
 - serviceName: foo-v2
 port: 8080
 weight: 20

HTTPRoute
route3

host: foo.com

Load Balancer
Service
foo-v1

Service
foo-v2

80%

20%

Gateway <-> Route
Relationships

Gateway

HTTPRoute
Developer

Platform
admin

istio-ingress
GatewayClass

Service

Gateway

gke-l7-gxlb
GatewayClass

GKE
Gateway
Controller

Deployment

Resource reference
direction

Creates

Demo

Ambient Mesh Demo

● Basic Application with no Istio

● Easily Install ambient mesh - secure overlay
○ Customer enables ambient mesh to get mTLS
○ L4 authorization policies
○ Zero downtime, zero pod restarts

● Easily Install Ambient Mesh - L7 policies
○ Istio waypoint proxies are deployed and utilized
○ L7 Policies
○ Zero downtime, zero pod restarts

● Easily uninstall Istio
○ Zero downtime, zero pod restarts

Takeaways

● We expect ambient mesh to be the best fit for most users going forward
● Sidecars still have their place and will continue to be supported

○ Applications that require dedicated resources
○ Sites that need customization (e.g., EnvoyFilter)
○ Regulated environments that expect their deployment model
○ Users that just like sidecars and don’t want to change

● Ambient and sidecars can be deployed together and interoperate
● “Experimental” code and announcement today
● Plan to release in the coming months
● Please contribute!

Thank You!

Abdel SGHIOUAR
Senior Cloud Developer Advocate
Kubernetes Podcast co-host
CNCF Ambassador
Twitter: boredabdel@

