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What is Teleport?

Teleport is an open source infrastructure access platform that makes use of reverse tunneling to provide 
audited access to infrastructure (Kubernetes, SSH, DB, Web, Desktop).







Teleport Cloud

● Dedicated instance of Teleport per customer

○ 10k+ pods

○ 100k+ reverse tunnels

○ Tunnel disconnect → disrupted access

○ Globally available: clusters in 6 regions

● Proxies peer to provide connectivity: 
EKS
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Ingress

● Clients and agents must connect to closest Proxy pods

↳ Route53 Latency Records

↳ ExternalDNS Operator

● Reverse tunnels must not be interrupted

↳ Stateless Network Load Balancers

● Proxy upgrades must not create downtime

↳ Envoy Proxy with ALPN routing

↳ Gateway API + Envoy Gateway

↳ Clever hack with `minReadySeconds`

















Zero-Downtime
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■ Prefer Postgres (RDS) for customer data
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■ Unidirectional, difficult to orchestrate multi-region deployment
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● Deployment: coordinated rollouts across regional clusters
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● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Kubefed?

■ Ideal model, but no longer active…

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Sync Controller (now OSS)!

● Container networking: proxy peering and auth traffic sent between regions











Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions

○ Cilium Global Services with dedicated etcd











User Journey

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API
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○ Cilium Global Services with dedicated etcd



Open Source

● Sync Controller:

○ github.com/gravitational/sync-controller (Apache 2)

● Envoy Gateway:

○ Upstream: github.com/envoyproxy/gateway (Apache 2)

○ Teleport Cloud fork: github.com/gravitational/gateway (Apache 2)

● Teleport:

○ github.com/gravitational/teleport (Apache 2)

https://github.com/gravitational/sync-controller
https://github.com/envoyproxy/gateway
https://github.com/gravitational/gateway
https://github.com/gravitational/teleport


Thanks!

Teleport Cloud Backend Team:

○ Carson Anderson - CNI stack, Cilium deployment

○ David Boslee - Ingress stack, Envoy Gateway fork

○ Tobiasz Heller - Teleport integrations

○ Bernard Kim - JSONB syncing & OpenAPI validations


