
User Journey:

Scaling Multi-cluster Kubernetes
@ Teleport Cloud

Stephen Levine
Software Engineer, Teleport



What is Teleport?

Teleport is an open source infrastructure access platform that makes use of reverse tunneling to provide 
audited access to infrastructure (Kubernetes, SSH, DB, Web, Desktop).







Teleport Cloud

● Dedicated instance of Teleport per customer

○ 10k+ pods

○ 100k+ reverse tunnels

○ Tunnel disconnect → disrupted access

○ Globally available: clusters in 6 regions

● Proxies peer to provide connectivity: 
EKS



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

↳ Anycast - Global routing

↳ NGINX (OSS) - Cluster ingress routing

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

↳ Anycast?

■ Fewer issues with DNS — but routing not stable enough

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

↳ Anycast

↳ NGINX (OSS)?

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

↳ NGINX (OSS)?

■ Supports ALPN routing – but no in-process config reloading

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

↳ Anycast

↳ NGINX (OSS)

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Ingress

● Clients and agents must connect to closest Proxy pods

↳ Route53 Latency Records

↳ ExternalDNS Operator



Ingress

● Clients and agents must connect to closest Proxy pods

↳ Route53 Latency Records

↳ ExternalDNS Operator

● Reverse tunnels must not be interrupted

↳ Stateless Network Load Balancers



Ingress

● Clients and agents must connect to closest Proxy pods

↳ Route53 Latency Records

↳ ExternalDNS Operator

● Reverse tunnels must not be interrupted

↳ Stateless Network Load Balancers

● Proxy upgrades must not create downtime

↳ Envoy Proxy with ALPN routing

↳ Gateway API + Envoy Gateway

↳ Clever hack with `minReadySeconds`

















Zero-Downtime











Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Gitops (e.g., FluxCD)?

● Container networking: proxy peering and auth traffic sent between regions





Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Gitops (e.g., FluxCD)?

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Gitops (e.g., FluxCD)?

■ Prefer Postgres (RDS) for customer data

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Gitops (e.g., FluxCD)?

■ Unidirectional, difficult to orchestrate multi-region deployment

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Cross-cluster reconcilers?

● Container networking: proxy peering and auth traffic sent between regions





Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Cross-cluster reconcilers + shared custom resource?

■ Single point-of-failure, multiple writers, etc.

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Kubefed?

■ Ideal model, but no longer active…

● Container networking: proxy peering and auth traffic sent between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

↳ Sync Controller (now OSS)!

● Container networking: proxy peering and auth traffic sent between regions











Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions



Needs

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions

○ Cilium Global Services with dedicated etcd











User Journey

● Ingress: highly-available, ultra-long-lived reverse tunnels

○ Envoy Proxy / Envoy Gateway / Gateway API

○ ALPN routing to separate tunnel and client connections to 443

○ minReadySeconds + Service updates => minimal downtime

● Deployment: coordinated rollouts across regional clusters

○ Configuration storage: gRPC + Postgres + JSONB

○ Cross-cluster operation: Sync Controller (inspired by Kubefed)

● Container networking: proxy peering and auth traffic between regions

○ Cilium Global Services with dedicated etcd



Open Source

● Sync Controller:

○ github.com/gravitational/sync-controller (Apache 2)

● Envoy Gateway:

○ Upstream: github.com/envoyproxy/gateway (Apache 2)

○ Teleport Cloud fork: github.com/gravitational/gateway (Apache 2)

● Teleport:

○ github.com/gravitational/teleport (Apache 2)

https://github.com/gravitational/sync-controller
https://github.com/envoyproxy/gateway
https://github.com/gravitational/gateway
https://github.com/gravitational/teleport


Thanks!

Teleport Cloud Backend Team:

○ Carson Anderson - CNI stack, Cilium deployment

○ David Boslee - Ingress stack, Envoy Gateway fork

○ Tobiasz Heller - Teleport integrations

○ Bernard Kim - JSONB syncing & OpenAPI validations


