
HACKING
OPENTELEMETRY
Alberto Gastaldello, Andrea Caretta - Liquid Reply IT

Conf42, June 8th 2023



AGENDA

1 Intro – Observability tips

2 OpenTelemetry

3 Distributed Traces

4 Hacking OpenTelemetry

5 Demo



OBSERVABILITY PILLARS

M

E

T

R 

I 

C

S

L

O

G

S

T

R

A

C

E

S

Request Rate

Error

Duration

Utilization

Saturation

Errors

Binary

Plaintext

Structured

Exception handling

Debugging

Profiling

Tracing/Context

ALERTING

AUDIT

CAPACITY

ROOT CAUSE 

ANALYSIS

4
G

O

L

D

E

N

S

I

G

N

A

L

S

Symptoms

Causes



OPEN
TELEMETRY



ADOPTERS AND CONTRIBUTORS

Observability Platforms

Cloud Providers

Recognize and adopt the standards 

issued by the CNCF

Leverage open source and support data 

ingestion in different formats

Suite of tools, APIs and SDKs designed to:

• instrument applications

• generate valuable telemetry data

• export them to different backends

Enables gaining deep insights into 
software's performance and behavior.

Enterprise Software

Use the Opentelemetry specification in 

their software to convey telemetry data

Opentelemetry



COMPONENTS

OpenTelemetry 

CollectorCross-language 

references

Language-specific 

SDK K8s Operator

Auto-instrumentation agents

API (data types and operations),

Data (semantic conventions)

They allow you to use APIs to 

generate telemetry data, export it to 

different backends propagating 

context information

Packages capable of generating 

telemetry data without changing 

the application code;

many libraries are supported and 

recognized automatically Kubernetes Operator implementation, 

manages Otel Collector and

self-instrumentation of workloads

in a distributed environment

Proxy capable of receiving 

telemetry data in different formats, 

editing and/or filtering it, and 

sending it in different formats to 

the desired backend



DATA FLOW

Otel

Collector

Otel

Collector

App CodeApp Code

Otel Auto-Instr.Otel Auto-Instr.

Otel API.Otel API.

Otel SDKOtel SDK

KubernetesKubernetes

L7 proxyL7 proxy

Cloud providersCloud providers

Shared Infra

Microservices

s

Timeseries

Databases

Timeseries

Databases

Traces

Databases

Traces

Databases

Column

Stores

Column

Stores

Observability

Frontend & APIs

3rd party

service

Managed DBsManaged DBs APIsAPIs

Client Instrumentation

OTLP

OTLP

OTLP

OTLP

Timeseries

Databases

Timeseries

Databases

Traces

Databases

Traces

Databases



DISTRIBUTED 
TRACES



TRACING CONCEPTS

A "distributed trace", or simply 

"trace", records the paths 

followed by a request (triggered 

by an application or an end-user) 

propagating through multi-service 

architectures.

A trace consists of one or more 

spans.

A span is identified as a trace unit.

As a building block of a distributed 

trace, it traces specific 

operations that a request makes, 

reporting a drawing of what 

happened during the interval in 

which the operation was 

performed.

Defines a universally recognized 

format for propagating data and 

linking them together. Can be 

adopted by different platforms and 

different tracking tools.

The following headers are 

propagated:

• traceparent

• tracestate

CONTEXTTRACE SPAN



TRACING CONCEPTS

SPAN CONTEXT

TRACE ID SPAN ID PARENT SPAN ID

Identifier of the whole trace tree
Identifier of the span

generated by the caller
Identifier of the current span

traceparent = 00-0af7651916cd43dd8448eb211c80319c-b9c7c989f97918e1-01

TRACE



A COMMUNICATING SCENARIO



FOLLOWING A TRANSACTION

Auto-instrumentation

Otel

Collector

Otel

Collector



TRACKING RESULTS - DYNATRACE



TRACKING RESULTS - GRAFANA



HACKING
THE COLLECTOR



ONLY LOGS AVAILABLE?

Application
•generates logs 
including telemetry data

Telemetry

processing 

layer

Logs

database

• simply forwards logs

METRICS LOGS TRACES METRICS LOGS TRACES

Application
•generates logs 
including telemetry data

Telemetry

processing 

layer

Logs

database

• receives logs

•processes telemetry data

• sends logs and traces

Traces

database



COLLECTOR MODULES & PIPELINES



COLLECTOR CONFIGURATION

receivers:
otlp:
protocols:
grpc:
http:

syslog:
udp:
listen_address: "0.0.0.0:54526"

protocol: rfc5424

processors:
transform:
log_statements:

- context: log
statements:
- set(severity_text, "FAIL") where body == "request failed"
- replace_all_matches(attributes, "/user/*/list/*", "/user/{userId}/list/{listId}")
- replace_all_patterns(attributes, "/account/\\d{4}", "/account/{accountId}")
- set(body, attributes["http.route"])

exporters:
loki:
endpoint: "https://user:token@logs-prod-example.grafana.net/loki/api/v1/push"

service:
pipelines:
logs:
receivers: [otlp, syslog]
processors: [transform]
exporters: [loki]

receivers:
otlp:
protocols:
grpc:
http:

syslog:
udp:
listen_address: "0.0.0.0:54526"

protocol: rfc5424

processors:
transform:
log_statements:

- context: log
statements:
- set(severity_text, "FAIL") where body == "request failed"
- replace_all_matches(attributes, "/user/*/list/*", "/user/{userId}/list/{listId}")
- replace_all_patterns(attributes, "/account/\\d{4}", "/account/{accountId}")
- set(body, attributes["http.route"])

exporters:
loki:
endpoint: "https://user:token@logs-prod-example.grafana.net/loki/api/v1/push"

service:
pipelines:
logs:
receivers: [otlp, syslog]
processors: [transform]
exporters: [loki]

OTel Collector

Receiver

Processor

Exporter



FROM LOG TO TRACE

Metrics

Receiver

Processor

Exporter

Logs

Receiver

Processor

Exporter

Traces

Receiver

Processor

Exporter

LOGS TRACESMETRICS TRACES



{
"timeUnixNano": "1671189357000000000",
"observedTimeUnixNano": "1671189357107662600",
"severityNumber": 18,
"severityText": "crit",
"body": {"stringValue": "<34>1 2022-12-16T11:15:57.000Z 

mymachine.example.com su - ID47 [opentelemetry
trace_id=\"0123456789abcdef0123456789abcdef\“ 
span_id=\"0123456789abcdef\" parent_span_id=\"abcdef0123456789\“ 
trace_flags=\"01\"] BOM'su root' failed for lonvick on /dev/pts/8"},

"attributes": [
{

"key": "parentSpanId",
"value": {"stringValue": "abcdef0123456789"}

},
...

],
"traceId": "0123456789abcdef0123456789abcdef",
"spanId": "0123456789abcdef"

}

EVERYTHING CAN BE A SPAN

LOG

Application

Telemetry

processing 

layer

<34>1 2022-12-16T11:15:57.000Z mymachine.example.com su - ID47 
[opentelemetry trace_id="0123456789abcdef0123456789abcdef" 
span_id="0123456789abcdef" parent_span_id="abcdef0123456789" 
trace_flags="01"] BOM'su root' failed for lonvick on /dev/pts/8

LOG

{
"trace_id": "0123456789abcdef0123456789abcdef",
"span_id": "0123456789abcdef",
"parent_span_id": "abcdef0123456789",
"start_time_unix_nano": 1671189357000000000,
"end_time_unix_nano": 1671189357107662600,
"attributes": [

{
"key": "body",
"value": {

"string_value": "<34>1 2022-12-16T11:15:57.000Z
mymachine.example.com su - ID47 [opentelemetry
trace_id=\"0123456789abcdef0123456789abcdef\“ 
span_id=\"0123456789abcdef\" parent_span_id=\"abcdef0123456789\" 
trace_flags=\"01\"] BOM'su root' failed for lonvick on /dev/pts/8"

}} ... ] ... }

TRACE SPAN



TELEMETRY DATA STORAGE

Application

Telemetry

processing 

layer

Logs

database

Traces

database

LOG

TRACE



DEMO



CONTACTS

al.gastaldello@reply.it

+39 342 864 7689

Alberto Gastaldello
a.caretta@reply.it

+39 345 970 7769

Andrea Caretta

mailto:al.gastaldello@reply.it
mailto:a.caretta@reply.it



