
The Art of Event-Driven
Observability with OpenTelemetry

Henrik Rexed

Cloud Native Advocate | Dynatrace

v

Cloud Native Advocate
15+ years of Performance engineering

Owner of

Producer of

Henrik Rexed

v

▪ Gentle reminder on OpenTelemetry
▪ The various components

▪ How to produce traces

▪ The various way of instrumenting EDA
architecture

▪ The value of Span links

If you stay with me you will ...

v

Once Upon the time

v

▪ My Manager taught me how to use tools to get
system health (perfmon, top, nmon…etc).

24 years ago …

Web Server Health 1999

v

▪ With solution having history and providing
metadata from our environment helped me to
design a better visualization:

20 years ago…

Web Server Health 2004

v

▪ With the usage of APM solutions, distributed
traces, metrics , it was easier to represent the
situation:

13 years ago…

Web Server Health 2010

v

▪ By looking at the logs produced by our
application and servers, the situation was ….a
bit ….clearer

10 years ago…

Web Server Health 2014

v

What I wanted to represent

What I
wanted

to
represent

v

Our artistict tools

v

Observability pillars

Logs Events Metric

Observability

Traces Profiling Exception

v

Why do we need several signals?

Analysis

Context

v

▪ Most of the Organizations tends to seperate the usage and storage of :
▪ Logs

▪ Traces

▪ Profiling

▪ Metrics

We isolate our signals

v

OpenTelemetry

v

OTel provides a set of APIs,
libraries, and tools

to capture distributed
traces, metrics, and

logs from your applications.

What is OpenTelemetry (OTel)?

Azure

Kubernetes

GCP

const span =

tracer.startSpan('operation1’);

span.setAttribute(

‘customer_level’, ‘gold’);

span.end();

Service
Python

Service
Node.js

OTel Collector
(optional)

OTel API
+

SDK

v

The main Component of OpenTelemetry

Instrument Collector

v

OpenTelemetry the Standard for Observability

MetricsLogs Traces Continuous Profiling

v

How to produce traces?

v

How to add OTel to your applications?

Service
Java

OTel Collector
(optional)

Manual
Instrumentation

Service
Python

const span =

tracer.startSpan('operation1’);

span.setAttribute(

‘customer_level’, ‘gold’);

span.end();

Service
Node.js

// Pre-instrumented libraries

pip install

opentelemetry-instrumentation

opentelemetry-instrument

python myapp.py

// OTel agent

java –javaagent:path/to/otel

javaagent.jar \

-jar myapp.jar

Semi-automatic/
Auto instrumentation

Observability
backend

v

▪ A trace is made of Spans.

▪ The trace Context glue all the various spans into a trace.

What is a trace?

Span 1

Span 2

Span 3

Span 4

Span 5

Span 6

Span

Name

Context

Parent_id

Start_time

End_time

Atribute

Events

{
"name": "Hello-Greetings",
"context": {

"trace_id": "0x5b8aa5a2d2c872e8321cf37308d69df2",
"span_id": "0x5fb397be34d26b51",

},
"parent_id": "0x051581bf3cb55c13",
‘status_code’ “STATUS_CODE_OK”

"start_time": "2022-04-29T18:52:58.114304Z",
"end_time": "2022-04-29T18:52:58.114435Z",
"attributes": {

"http.route": "some_route1"
},
"events": [

{
"name": "hey there!",
"timestamp": "2022-04-29T18:52:58.114561Z",
"attributes": {

"event_attributes": 1
}

},
{

"name": "bye now!",
"timestamp": "2022-04-29T22:52:58.114561Z",
"attributes": {

"event_attributes": 1
}

}
],

}

v

Tracing Instrumentation

Otel
OpenTelemetry API

Propagator

TraceProvider

SpanProcessor

Sampler

Exporter

Ressource

Span

v

▪ Resource is the identity of a process production Telemetry data.

▪ The Resource is key to name telemetry components in the Observability
backends.

▪ There are standard attributes to define a resource :

Resource

Attribute Type Description Required?

Service.name String Name of the service Yes

Service.namespace String Namespace of the
service.name

No

Service.instance.id String No

Service.version String Version number of
the service

No

v

Tracing Sampler

▪ AlwaysON

▪ AlwaysOff

▪ ParentBased

▪ TraceIdratioBased

▪ parentbased_always_on

▪ parentbased_traceidratio

▪ parentbased_always_off

Service A

Service B

Service C

Service D

Service E

Observability backend

50%

25%

50%

10%

10%

1000 requests = 1 request with End2End trace with spans from service E

v

What is propagation?

Service A Service B

Context

propagation

Inject extract

v

In a traditional micro service architecture

v

▪ Distributed tracing allow us to attach:
▪ Keep track on all the tasks of a given transactions

With this visualization we can understand where we are
spending time in our transaction flow

27

Distributed tracing in normal architecture

v

v

▪ With OpenTelemetry, I can represent
my transactions in various way :

▪ One Big Traces

▪ Separate my transactions in sub transactions.

29

Distributed tracing in EDA

v

Example 1 – End2End trace

v

Our environnent

Otel-demo

OpenTelemetry
Operator

Default

EDA

https://github.com/isItObservable/tracing_eda

Confidential 32

v

v

Is generated distributed traces useful?

v

Example 1 – The usage of Span Links

v

▪ Span link is feature allowing to create a releationship between seperated
spans.

Span Links

~2min

~200ms

~2min

~1m30

v

Our environnent

Otel-demo

OpenTelemetry
Operator

Default

EDA

https://github.com/isItObservable/tracing_eda

Confidential 37

v

Confidential 38

v

Conclusion

v

Pros Cons

Sampling
decision

Relation
between

Producer &
Consumer

Visualize traces

Keep track on
the consumers

Pros/Cons

v

Take Away

In
s
tr

u
m

e
n

ta
ti

o
n

• Make sure your
code is agnostic
using no Vendor
library and
exporter

O
b

s
e
rv

a
b

il
it

y• Make sure the
metrics produced
has enough
dimensions

• Produce logs with
contextual
information

• Add Span
Attributes to your
spans

C
re

a
ti

vi
ty

• Understand your
system

• Design the right
Observability

v

▪ Looking for educational content on Observability , Checkout the Youtube
Channel :

Is It Observable

Is it observable

CLOUD DONE RIGHT

	Cover slides
	Slide 1: The Art of Event-Driven Observability with OpenTelemetry
	Slide 2: Henrik Rexed
	Slide 3: If you stay with me you will ...
	Slide 4: Once Upon the time
	Slide 5: 24 years ago …
	Slide 6: 20 years ago…
	Slide 7: 13 years ago…
	Slide 8: 10 years ago…
	Slide 9: What I wanted to represent
	Slide 10: Our artistict tools
	Slide 11: Observability pillars
	Slide 12: Why do we need several signals?
	Slide 13: We isolate our signals
	Slide 14
	Slide 15: OpenTelemetry
	Slide 16: What is OpenTelemetry (OTel)?
	Slide 17: The main Component of OpenTelemetry
	Slide 18: OpenTelemetry the Standard for Observability
	Slide 19: How to produce traces?
	Slide 20: How to add OTel to your applications?
	Slide 21: What is a trace?
	Slide 22: Tracing Instrumentation
	Slide 23: Resource
	Slide 24: Tracing Sampler
	Slide 25: What is propagation?
	Slide 26: In a traditional micro service architecture
	Slide 27: Distributed tracing in normal architecture
	Slide 28
	Slide 29: Distributed tracing in EDA
	Slide 30: Example 1 – End2End trace
	Slide 31: Our environnent
	Slide 32
	Slide 33: Is generated distributed traces useful?
	Slide 34: Example 1 – The usage of Span Links
	Slide 35: Span Links
	Slide 36: Our environnent
	Slide 37
	Slide 38: Conclusion
	Slide 39: Pros/Cons
	Slide 40: Take Away
	Slide 41: Is it observable
	Slide 42

