
Building a scalable ecosystem
 for high-loaded multiplayer game

Dmitrii Ivashchenko | MY.GAMES

Projects

Legend: Legacy of the Dragons THREE KINGDOMS

About

Dmitrii Ivashchenko
Lead Software Engineer

Overview
CI/CD Organization
How to get a large team
up and running

Backend Infrastructure
How to prepare the
backend for scaling up

Blue/Green Deployment
How to release new versions
without stopping for technical work

CI/CD

Goals and
Principles

● Using containers for maximum
environment reproducibility for CI
and staging.

● Using an emulator farm for testing.

● Simplifying the deployment of test
and production servers to the "click
of a button" level.

● Do the maximum possible checks at
the merge request stage.

● Infrastructure as Code paradigm.

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Infrastructure as Code
● Versioning

● Automation

● Repeatability and Consistency

● Documentation

● Scalability and Changes

● Collaboration and Responsiveness

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

TeamCity and GitLab
● Teamcity allows storing all

configuration in Kotlin DSL.

● GitLab allows doing this with YAML.

● In GitLab, it's convenient to perform
checks after pushing.

TeamCity

GitLab

● Automatic Builds: Builds triggered for specific branches (Develop and Stable).

● Exclusions: Excludes builds for feature branches or task-specific testing.

● Server and Client Builds: Builds server and clients for three main platforms (PC, Android,
iOS) after validation and server configuration.

● Server Launch: Launches a server named "Develop" after successful builds.

● App Center Upload: Uploads client versions to the App Center for later downloads to
devices.

● Regular Updates: Ensures a fresh client-server pair with the latest changes every N hours.

AutoBuilds

Server

Steps to build a server:

1. Assemble server configurations.

2. Build the server based on these
configurations.

3. Deploy the server.

OnDemand Servers

Isolated Testing Environment

 OnDemand servers offer a separate, isolated
environment ideal for testing new features,
bug fixes, or running experiments without
impacting the main development flow.

Automated Server Setup

The build process in Teamcity creates
server configurations, the server itself, and
a cloud-based virtual machine that
automatically launches the server.

User-Specific Access

Each Teamcity user is assigned a
unique name for their virtual
machine, allowing for individualized
testing environments.

Scheduled Deletion

To manage resources, servers
created in this manner are
automatically deleted twice a
week.

An MR is created for the new branch, triggering automated tests
and optional manual reviews.

Closing Outdated MRs
Irrelevant or outdated Merge Requests should be closed to avoid
clogging the MR list and causing confusion.

Developers create a new branch from the "develop" HEAD, make
task or bug-specific commits, and push these to the branch.

Merge Request Workflow
Branch Creation and Committing

Merge Request and Reviews

Validation System

Validation SystemConnecting to the Project
The Validator System is stored as an AssetValidation
package and can be added to the Unity project like any
other package.
Running and Configuring Validators
Validators can be run individually or in groups via a special
window accessed from the Unity top panel.

Custom Selectors and Validator Types
Validators come in four types that determine their
behavior and the types of assets they validate.

Field Change Validators
Special validators can be created to track and validate changes in
config fields that cannot be automatically verified.

Git Hooks

Client Hooks

Installer Component

A binary for installing and
automatically updating Git
hooks in the local repository
copy.

Commit-Msg Hook

 This hook validates the
commit message according to
predefined rules. It serves to
enforce best practices for
commit messages.

Pre-Commit

This hook is responsible for the majority of
file checks before a commit is finalized. It
uses specific rules to validate the files that
are about to be committed.

Post-Commit

These hooks are executed
after a commit. Mainly, they
are used for various
notifications.

Server Hooks

ProtectedBranch

Restricts pushes to specified
branches, making them
read-only for users who try to
push changes.

RebaseRequired

Requires that a rebase is
performed before allowing a
push to proceed, ensuring
that the branch is up-to-date
with the main repository.

NewBranchName

Validates the name of new
branches.

MessageContent

Enforces specific formatting
rules for commit messages by
utilizing regular expressions.

Backend
Infrastructure

Platform Architecture

Eclipse Vert.x
Serves as the messaging

system and provides
clustered storage for

runtime data.

Ansible
Responsible for configuring

server applications, automating
the setup and maintenance

processes.

Hazelcast
Functions as an in-memory
data grid and serves as the

foundation for Vert.x.

Apache Kafka
 Acts as a log data broker,

handling the flow and
storage of log data.

PostgreSQL
Utilized for storing

persistent data through
various methods and

formats.

Main Platform Components

Account Server

Responsible for user
authentication and holds
information about all
connected game servers.

Game Server

Acts as the main repository
for game mechanics, logic,
and data.

Gametool WEB

Serves as an administration
tool for both players and
servers, facilitating easier
management.

Gametool ETL

Extracts game logs from
Apache Kafka and loads them
into the Gametool database for
further analysis.

Account Server Components
Game-Servers

Configuration Component Authentication Component Billing Component
Manages communication with

game servers, announces
maintenance, and other

administrative tasks.

Responsible for user
authentication and distribution

to game servers and
front-components.

Processes in-game
purchases.

Game Server
Architecture

● Cluster Nodes

● Front Component

● Dispatcher

● Scheduler

● DB Operation Executor

● Resource System

● Log System

● Mechanic Components

GameTool Architecture

Serves as a server administration tool,
allowing access to player information

and logs.

Extracts game logs from Apache Kafka,
processes the data, and stores the

transformed data in its own database.

GameTool WEBGameTool ETL

Mechanics
Services

● Proton: Used for PvP and cooperative gameplay.

● Leaderboards: A system for storing and processing player rankings.

● Friends: Manages the list of friends and referral information.

● Player Profile: Provides a detailed card of the player's information.

● Replay: Designed to store gameplay replays.

● Mail: Aimed at storing and processing in-game mail messages.

● Chat: Processing of messages, members, and settings for all chats.

● Match Making: Designed for finding opponents and teammates.

● Clans: Manage clans and clan activities.

● Push Notifications: Sending notifications to devices.

Our current architecture uses
Photon Cloud to coordinate
real-time multiplayer gaming and
other functionalities, offering
low-latency data centers
worldwide.

Photon Cloud

Data Storage and MessagingPostgreSQL
Primary Data Storage

Apache Kafka
Message Brokering

Hazelcast
In-Memory Database

Vert.x
Reactive Application Framework

Vert.X
Vert.x Advantages
Supports multiple programming languages and operates on a
reactor pattern.

Vert.x Challenges
Can lead to complicated code if the programming language
used is not fully supported by the framework.

Quasar as an Alternative
Considered as a potential alternative to Vert.x but was not
actively maintained as of 2017.

Handling Transactional Operations

Testing FindingsTransactions Vert.x Updates

Discovered a lock
queuing issue in

Vert.x during
testing.

Created to allow linear
operation within message

processing and covers
most use-cases.

 Developers have
addressed the lock

queuing issue
reported during

testing.

Prometheus and Grafana

Utilized to visualize the
metrics gathered by

Prometheus.

Used to collect performance
metrics.

Visualization with GrafanaMonitoring with Prometheus

🖥 📈

Game Cluster Architecture

Cluster Composition

Collection of machines
running instances of Vert.x
and Hazelcast.

Node Functionality

Each node runs various game
mechanics.

Vert.x 'Verticles'

Encapsulate different tasks
such as game model loading
or arcade tasks.

Admin Interface

Used for comprehensive
management of the entire
setup.

Scaling StrategyCurrent Capacity
Hardware can comfortably
support up to 150,000 CCU.

CPU Limitations
Additional servers can be added to the
cluster if CPU limits are reached.

PostgreSQL Bottleneck
Identified as a potential first
bottleneck in scalability.

Hazelcast Solution
Deferred synchronization with Hazelcast can
help alleviate PostgreSQL scalability issues.

Blue/Green
Deployment

Reasons for Adopting Blue-Green
Deployment Strategy

Downtime CostsExpense
Consideration

Mobile Game
PublishingEven 1 minute of

downtime is
expensive, making
BGD beneficial for

minimizing or
eliminating
downtime.

Architectural and
manufacturing

costs associated
with Blue-Green

Deployment (BGD)
need to be weighed

against benefits.

New versions
require store

approval, which
takes time.

● Components Involved: A client and two servers (Alpha and Beta) are the
main elements of the setup.

● Traffic Switching: The aim is to switch traffic from Alpha to Beta
seamlessly, without player interruptions.

● Roles of Parties:
○ Game Server: Runs the game and interacts with the client.
○ Client: Connects to the game server for gameplay.
○ Special Account Server: Provides the client with the address of

the game server to connect to.
● Account Server's Knowledge: Knows the game server address and its

status (live/stopped), which is meta-information unrelated to the actual
running status of the game server.

Blue-Green Deployment in Practice

Zero Downtime Server Update

Initial Status
 Alpha server is live,

Beta server is stopped.

Seamless Transition
The client connects to Beta

without the player noticing any
disruption, achieving zero

downtime during the update.

Player Entry
When a player enters the game, the
client contacts the account server,
which provides the Alpha server's
address for the client to connect.

Status Switch
At some point, Alpha is marked as
"stopped" and Beta as "live." Alpha

sends a "reconnect" broadcast to all
connected clients.

Client Reconnection
 Upon receiving the "reconnect"
signal, the client contacts the

account server again.

● QA Final Test: Introduce a "staging" status for the
game server to allow QA specialists to run final
tests before letting players join.

● Client Activity Completion: Aim to allow clients to
complete certain activities (e.g., battles) on the
same server they started on.

● Staging Status Access:

○ QA Specialists: Can access the game server
during its "staging" status for testing.

○ Ordinary Players: Can also access, provided
the client specifies the preferred game
server in the login request.

QA Testing and Client-Side
Activity Completion

Flexible Server Update Strategy

Initial Setup
Alpha is live, Beta is

stopped, and the client
is connected to Alpha.

Introduction of Staging
Alpha remains live, Beta

turns to staging.

Staging to Live Transition
After QA checks, Beta becomes
live, and Alpha turns to staging.

Alpha Stopped
Once Alpha is marked as

"stopped," all new game access
attempts are directed to Beta.

Version Management StrategyBackward Compatibility
Rolling out a new game version initially necessitates maintaining
backward compatibility for the client-server protocol.

Double Work Avoidance
Decided against maintaining both forward and backward
compatibility to reduce workload.

Strict Version Correspondence
Version X clients interact only with version X servers, and version Y
clients with version Y servers.

Within-Version Flexibility
Changes to the server implementation are permitted as long as they don't
affect the client-server protocol, eliminating the need for backward
compatibility maintenance.

From Soft to Hard Updates

Release of New Version

At a certain point, version 2.0
is released to replace the
existing 1.0 version.

Error Handling

Any issues discovered during the soft
update are fixed. Players are then
transferred from Beta to a new server,
Gamma, which incorporates these fixes,
using the BGD process. Players on client 1.0
can still use Alpha.

Soft Update Activation

After QA checks, Beta becomes live for a
limited percentage of players, offering
the new 2.0 client. If successful, it
becomes available to all players. No
reconnects are sent from the old server
version.

Hard Update Activation

Eventually, Alpha is stopped, and all
attempts to log in with the 1.0 client
are blocked. Players are prompted to
update their client to version 2.0.

Simplified Update via Game Tool
Statelessness of Account Server

The account server's entire state is
stored in its own database, making
instances stateless.

Client Migration

After confirming that Beta is
ready to go live, a QA
specialist uses the Game Tool
to instruct Alpha to send
reconnect signals to clients,
initiating their migration to
Beta.

QA-Controlled BGD

QA specialists can use the
Game Tool to instruct the
account server to change a
game server's status.

Database State Update

Upon receiving the command
from the Game Tool, the
account server updates its
database with the changed
status of the game server.

Bug Management

Zero Downtime for Fixes
The BGD strategy allows for bug

fixes to be rolled out without
causing any downtime, ensuring
continuous gameplay for users.

Server Over Client
 Bugs on the client-side are generally
more dangerous due to longer update

cycles, making the server-side BGD
approach a valuable asset for
maintaining game integrity.

Activity Continuity
 In case of a critical error in a game
activity, players can still participate

in other game activities.

Client-Side Bug Mitigation
While updating the mobile client takes

time, server adjustments can sometimes
"persuade" the client to behave in a way

that makes a bug invisible or non-existent.

Fallback Option
Even if preventative measures fail and bugs

make it to the live environment, the BGD
strategy provides a safety net for rapid
remediation, sometimes in unexpected

scenarios.

Conclusions

Summary and Takeaways

BGD StrategyFlexible Backend InfrastructureRobust CI/CD

Ensures zero downtime
during software updates,
providing a reliable and

smooth user experience.

Meticulously designed for
scalability to handle a growing

user base without compromising
performance.

Serves as the backbone for
integrating a large development

team, enabling seamless
integration and frequent updates

without user disruption.

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Thank you!

Dmitrii Ivashchenko
Lead Software Engineer

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

