
Observability strategies to not overload 
engineering teams.

Finding a balance between visibility and engineering efforts.



whoami

- Brazilian living in Braga
- Open Source Contributor
- Currently working @Coralogix
- Kubernetes, O11y, GitOps, Distributed Systems



Introduction

In the context of software engineering, observability 

is crucial for understanding how a system is 

behaving, identifying issues and bottlenecks, and 

troubleshooting problems quickly.

Observability - Engineer night watcher



Introduction

Instrumenting code to collect all possible metrics 

and traces can quickly become overwhelming and 

lead to performance issues.

Observability - Engineer nightmare



Introduction

These strategies are designed to give your 

engineering teams a solid foundation of 

observability without having to change any code.

- Proxy

- OpenTelemetry

- eBPF

Strategies to not overload engineering teams.

https://itnext.io/observability-strategies-to-not-overload-engineering-teams-proxy-strategy-607d1007688
https://itnext.io/observability-strategies-to-not-overload-engineering-teams-opentelemetry-strategy-d064b806435c
https://itnext.io/observability-strategies-to-not-overload-engineering-teams-ebpf-b034b26d7f1d


Strategies to not overload engineering teams.

Web proxies are usually part of the platform and a 

great way to collect telemetry data without any 

extra effort.

The Proxy Strategy

Ingress Proxy

Service A

Metrics

Traces

Logs

Service B



Strategies to not overload engineering teams.

OpenTelemetry auto instrumentation automatically 

adds instrumentation code to your application, 

making it easier to collect telemetry data from your 

distributed systems.

The OpenTelemetry Strategy

Otel Agent

Service A

Metrics

Traces

Logs

Service B

https://opentelemetry.io/docs/instrumentation/java/automatic/


Strategies to not overload engineering teams.

eBPF (extended Berkeley Packet Filter) is a Linux 

kernel technology used to trace, monitor, and 

analyze system performance and behavior, 

providing observability insights to developers and 

operators.

The eBPF Strategy

eBPF Agent

Service A

Metrics

Traces

Logs

Service B

https://ebpf.io/


What's the best option?
As always, it depends.

Proxy OpenTelemetry Auto Instrumentation eBPF

Tech agnostic 👍 👎 👍
Ensure context propagation 👎 👍 👍
Environment Agnostic 👍 👍 👍
Multi Telemetry Data 👍 👍 👍



Strategies to not overload engineering teams.

Why choose only one strategy if you can combine 

multiple or maybe all strategies, to provide deep 

visibility about different layers of your system?

The all in one strategy

eBPF - Otel 
Proxy

Service A

Metrics

Traces

Logs

Service B



Q&A



Thank you!


