
Observability strategies to not overload 
engineering teams.

Finding a balance between visibility and engineering efforts.
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Introduction

In the context of software engineering, observability 

is crucial for understanding how a system is 

behaving, identifying issues and bottlenecks, and 

troubleshooting problems quickly.

Observability - Engineer night watcher



Introduction

Instrumenting code to collect all possible metrics 

and traces can quickly become overwhelming and 

lead to performance issues.

Observability - Engineer nightmare



Introduction

These strategies are designed to give your 

engineering teams a solid foundation of 

observability without having to change any code.

- Proxy

- OpenTelemetry

- eBPF

Strategies to not overload engineering teams.

https://itnext.io/observability-strategies-to-not-overload-engineering-teams-proxy-strategy-607d1007688
https://itnext.io/observability-strategies-to-not-overload-engineering-teams-opentelemetry-strategy-d064b806435c
https://itnext.io/observability-strategies-to-not-overload-engineering-teams-ebpf-b034b26d7f1d
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Web proxies are usually part of the platform and a 

great way to collect telemetry data without any 

extra effort.

The Proxy Strategy

Ingress Proxy

Service A

Metrics

Traces

Logs

Service B
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OpenTelemetry auto instrumentation automatically 

adds instrumentation code to your application, 

making it easier to collect telemetry data from your 

distributed systems.

The OpenTelemetry Strategy

Otel Agent

Service A

Metrics

Traces

Logs

Service B

https://opentelemetry.io/docs/instrumentation/java/automatic/
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eBPF (extended Berkeley Packet Filter) is a Linux 

kernel technology used to trace, monitor, and 

analyze system performance and behavior, 

providing observability insights to developers and 

operators.

The eBPF Strategy

eBPF Agent

Service A

Metrics

Traces

Logs

Service B

https://ebpf.io/


What's the best option?
As always, it depends.

Proxy OpenTelemetry Auto Instrumentation eBPF

Tech agnostic 👍 👎 👍
Ensure context propagation 👎 👍 👍
Environment Agnostic 👍 👍 👍
Multi Telemetry Data 👍 👍 👍
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Why choose only one strategy if you can combine 

multiple or maybe all strategies, to provide deep 

visibility about different layers of your system?

The all in one strategy

eBPF - Otel 
Proxy

Service A

Metrics

Traces

Logs

Service B



Q&A



Thank you!


