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Latency Numbers Every Programmer Should Know 





Queuing Theory
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Queuing Theory
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Queuing Theory

latency = sum(execution time / parallelism) * queue length

throughput = min((parallelism / execution time))



Queuing Theory
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Conway’s Law
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TOOLBOX



SYNC TO ASYNC
POLLING, FAKE BOUNDARIES

CQRS CACHING
MULTI-WRITES

SCHEMAS
CONTRACT-BASED TESTS

CLOUD NATIVE

12 FACTOR
TECHNOLOGY
GRPC, REST, GRAPHQL

SAGA
ORCHESTRATION, COREOGRAPHY

OBSERVABILITY
SLO, TRACING, METRICS, LOGS

SERVICE MESH

RESILIENCY PATTERNS
CIRCUIT BREAKER, BULKHEAD, RETRIES, TIMEOUTS

BACKPRESSURE

MESSAGING
CORRELATION ID, ROUTING SLIP, EXACTLY ONCE

TOPICS VS QUEUES

AUTO-SCALING

CONCURRENCY 
MODEL

REACTIVE, ACTOR-BASED, COROUTINES



EXAMPLES
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READ WRITE

• Read-heavy workload

• Immutable writes

• Low latency baseline

• Cold Cache & Distributed 

Cache won’t work



CQRS
READWRITE

Amazon Simple Queue 

Service (Amazon SQS)

Amazon DynamoDB

Replication

READ READ



Client Libraries

Amazon S3
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Shift Left

Amazon S3
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Proxy
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Region Pinning
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Region Pinning
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Going...Going...Gone!

~60ms

Mirror Maker



Recent Keys Values

WCU RCU=
0

2000

4000

6000

8000

10000

12000

14000

16000

13:20 13:25 13:30 13:35

Traffic Autoscale

Throttling



Recent Keys Values
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Recent Keys Values
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Baseline

Auto Scaling group
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Retries

Auto Scaling group

RCU = 400

HTTP 400

Retry

No Fairness



Built In Rate-Limiting
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Built In Rate-Limiting
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Service Mesh

Auto Scaling group

120/s

Needs API Change
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Queuing Theory
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Moving Towards RabbitMQ



Separate by API Keys
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Direct Read



Single Worker



Five Workers



Thank You!
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