
Aspects of 
Microservice 
Interactions

This Photo by Unknown Author is licensed under CC BY

https://sketchfab.com/3d-models/death-star-ii-17ccca0dbb6b4e338fa999202f9e6685
https://creativecommons.org/licenses/by/3.0/


Death Star Architecture



WHY?



Characteristics

Independently 
Deployable

Polyglot

Autonomous





Driving Forces

latency

availability

Conway’s law

reliability 

queuing theory



Latency



Latency



Disk

Network

RAM

CPU

99%

99%

99%

99%

96%Availability



99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

CLIENT SERVER DB

Availability 88.5%



CPU

RAM

Network

Disk

CPU

RAM

Network

Disk

CLIENT SERVER

Reliability



Reliability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 request 100 requests

succeed fail



Latency Numbers Every Programmer Should Know 





Queuing Theory

execution
time

arrival rate
departure rate

latency



Queuing Theory

arrival rate departure rate>



Queuing Theory

100ms

10/s
latency = 800ms



Queuing Theory

100ms
20/s

latency = 400ms

100ms



Queuing Theory

50ms 50ms

20/s
latency = 800ms



Queuing Theory

100ms 50ms

10/s
latency = 1200ms



Queuing Theory

latency = sum(execution time / parallelism) * queue length

throughput = min((parallelism / execution time))



Queuing Theory

QoS?



Queuing Theory

QoS

QoS

QoS



Conway’s Law



Conway’s Law



Conway’s Law



Conway’s Law

Schema 
Owner



Conway’s Law

Schema 
Owners



Conway’s Law Schema
Federation



TOOLBOX



SYNC TO ASYNC
POLLING, FAKE BOUNDARIES

CQRS CACHING
MULTI-WRITES

SCHEMAS
CONTRACT-BASED TESTS

CLOUD NATIVE

12 FACTOR
TECHNOLOGY
GRPC, REST, GRAPHQL

SAGA
ORCHESTRATION, COREOGRAPHY

OBSERVABILITY
SLO, TRACING, METRICS, LOGS

SERVICE MESH

RESILIENCY PATTERNS
CIRCUIT BREAKER, BULKHEAD, RETRIES, TIMEOUTS

BACKPRESSURE

MESSAGING
CORRELATION ID, ROUTING SLIP, EXACTLY ONCE

TOPICS VS QUEUES

AUTO-SCALING

CONCURRENCY 
MODEL

REACTIVE, ACTOR-BASED, COROUTINES



EXAMPLES



Rapid Read Protection

Client

99%

99%

~ 99.99 %



READ WRITE

• Read-heavy workload

• Immutable writes

• Low latency baseline

• Cold Cache & Distributed 

Cache won’t work



CQRS
READWRITE

Amazon Simple Queue 

Service (Amazon SQS)

Amazon DynamoDB

Replication

READ READ



Client Libraries

Amazon S3

Startup



Client Libraries

Amazon S3

Startup



Client Libraries

Amazon S3

Health Check



Shift Left

Amazon S3

CI/CD



Proxy

Amazon S3

Proxy



Region Pinning

~60ms

Replication Lag



Region Pinning

~60ms

Replication Lag



Going...Going...Gone!

~60ms

Mirror Maker



Recent Keys Values

WCU RCU=
0

2000

4000

6000

8000

10000

12000

14000

16000

13:20 13:25 13:30 13:35

Traffic Autoscale

Throttling



Recent Keys Values
Separate Critical Path



Recent Keys Values
Separate Critical Path



Recent Keys Values

WCU RCU<

Circuit Breaker 

+ Bulkhead

Separate Critical Path



Baseline

Auto Scaling group

RCU = 400

HTTP 400

15,000 items



Retries

Auto Scaling group

RCU = 400

HTTP 400

Retry

No Fairness



Built In Rate-Limiting

Auto Scaling group

RCU = 400

HTTP 400

40/s

40/s

80/s



Built In Rate-Limiting

Auto Scaling group

RCU = 400

HTTP 400

40/s

40/s

40/s

120/s

Rate-Limit Changes



Service Mesh

Auto Scaling group

120/s

Needs API Change

HTTP 429

RCU = 400

HTTP 400



Queuing Theory

4ms
500/s

latency = 30s

4ms

15,000 items



Queuing Theory

500/s
latency = 30s

15,000 items
10ms

10ms

10ms

10ms

10ms



Moving Towards RabbitMQ



Separate by API Keys

Worker

Auto Scaling group

Service

Auto Scaling group

RCU

API Key



Direct Read



Single Worker



Five Workers



Thank You!

61

@gitaroktato

https://www.linkedin.com/in/oresztesz

gitaroktato

ORESZTÉSZ MARGARITISZ
ASSOCIATE CHIEF SOFTWARE ENGINEER



References

Latency

https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

https://www.cloudping.co/

https://aws-latency-test.com/

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://gist.github.com/jboner/2841832

https://blog.bytebytego.com/p/ep22-latency-numbers-you-should-know

Availability

https://github.com/gitaroktato/microservices-availability-simulator

https://eventhelix.com/fault-handling/system-reliability-availability

https://eventhelix.com/fault-handling/reliability-availability-basics

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing



References

Backpressure with SQS

https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/unreal-engines-pixel-streaming-on-aws-

ra.pdf?did=wp_card&trk=wp_card

Reliability

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

Queuing Theory

https://www.youtube.com/watch?v=oQGreeij-OE

https://www.youtube.com/watch?v=raRpbsWQBCo

https://en.wikipedia.org/wiki/Little%27s_law

https://en.wikipedia.org/wiki/Kendall%27s_notation

https://dzone.com/articles/applying-back-pressure-when

Rapid-Read Protection

http://www.datastax.com/dev/blog/rapid-read-protection-in-cassandra-2-0-2



References

Architecture Katas

https://nealford.com/katas/kata?id=GoingGoingGone

Kafka / Kinesis Multi-Region Examples

https://aws.amazon.com/blogs/big-data/increase-apache-kafkas-resiliency-with-a-multi-region-deployment-and-mirrormaker-2

https://aws.amazon.com/blogs/big-data/build-highly-available-streams-with-amazon-kinesis-data-streams

The Twelve-Factor App

https://12factor.net/

Rate-Limiting Sandbox

https://github.com/gitaroktato/system-design-excercises/tree/main/rate-limiting

Microservices Availability Simulator

https://github.com/gitaroktato/microservices-availability-simulator



References

Backpressure with RabbitMQ

https://www.rabbitmq.com/maxlength.html

https://www.rabbitmq.com/tutorials/tutorial-six-java.html

https://www.rabbitmq.com/consumers.html#single-active-consumer

https://www.rabbitmq.com/flow-control.html

https://blog.rabbitmq.com/posts/2020/05/quorum-queues-and-flow-control-the-concepts

https://www.rabbitmq.com/consumer-prefetch.html

https://blog.rabbitmq.com/posts/2014/04/finding-bottlenecks-with-rabbitmq-3-3/

https://blog.rabbitmq.com/posts/2015/10/new-credit-flow-settings-on-rabbitmq-3-5-5/

https://www.rabbitmq.com/confirms.html#publisher-confirms


	Slide 1: Aspects of Microservice Interactions
	Slide 2: Death Star Architecture
	Slide 3: WHY?
	Slide 4: Characteristics
	Slide 5
	Slide 6: Driving Forces
	Slide 7: Latency
	Slide 8: Latency
	Slide 9: Availability
	Slide 10: Availability
	Slide 11: Reliability
	Slide 12: Reliability
	Slide 13: Latency Numbers Every Programmer Should Know 
	Slide 14
	Slide 15: Queuing Theory
	Slide 16: Queuing Theory
	Slide 17: Queuing Theory
	Slide 18: Queuing Theory
	Slide 19: Queuing Theory
	Slide 20: Queuing Theory
	Slide 21: Queuing Theory
	Slide 22: Queuing Theory
	Slide 23: Queuing Theory
	Slide 24: Conway’s Law
	Slide 25: Conway’s Law
	Slide 26: Conway’s Law
	Slide 27: Conway’s Law
	Slide 28: Conway’s Law
	Slide 29: Conway’s Law
	Slide 31: TOOLBOX
	Slide 32
	Slide 33: EXAMPLES
	Slide 34: Rapid Read Protection
	Slide 35
	Slide 36: CQRS
	Slide 37: Client Libraries
	Slide 38: Client Libraries
	Slide 39: Client Libraries
	Slide 40: Shift Left
	Slide 41: Proxy
	Slide 42: Region Pinning
	Slide 43: Region Pinning
	Slide 44: Going...Going...Gone!
	Slide 45
	Slide 46: Separate Critical Path
	Slide 47: Separate Critical Path
	Slide 48: Separate Critical Path
	Slide 49: Baseline
	Slide 50: Retries
	Slide 51: Built In Rate-Limiting
	Slide 52: Built In Rate-Limiting
	Slide 53: Service Mesh
	Slide 54: Queuing Theory
	Slide 55: Queuing Theory
	Slide 56: Moving Towards RabbitMQ
	Slide 57: Separate by API Keys
	Slide 58: Direct Read
	Slide 59: Single Worker
	Slide 60: Five Workers
	Slide 61: Thank You!
	Slide 62: References
	Slide 63: References
	Slide 64: References
	Slide 65: References

