
Idiomatic Python:
Tools and Tips

Conf42: Python 2021
Ammara Laeeq

Outline
❖ What is Pythonic and why is important?
❖ What is code quality?
❖ Why code quality is important?
❖ What tools are available?
❖ What is Idiomatic Python?
❖ What are some common Pythonic Idioms?

What is Pythonic?
“Any program, function or block of code that follows style guidelines
and make use of Python’s unique capabilities or language features”

What is Code Quality?
❖ It does what it is supposed to do
❖ There are no defects and problems
❖ It is readable, maintainable and extendable

Why Code Quality is Important?

❖ Clarity
❖ Efficiency
❖ Credibility

Tools

Zen of Python
PEP8

Linters

Zen of Python (PEP-20)

❖ May 2020, Barry Warsaw sang these as lyrics

PEP 8

“Proposals are documents to describe new features proposed and to
document different aspects of Python like performance, design and
style, for the community”

Code Layout
❖ One statement per line
❖ Single point of return
❖ Indentation

➢ 4 spaces per indentation level
❖ Tabs or Spaces

➢ Spaces are preferred
❖ Maximum Line Length

➢ Limit lines to 79 characters
➢ 72 characters for comments and docstrings

❖ Imports
➢ Top of the file
➢ Each import at a separate line
➢ Wild card imports are discouraged

❖ String Quotes
➢ Single or double, be consistent

Naming Conventions
❖ Packages/Modules

➢ Short names, all lowercase, _ can be used for readability but are discouraged e.g. pandas,
models.py

❖ Classes
➢ Use PascalCase, InitCaps, do not include the world Class e.g. Employee not EmployeeClass

❖ Exception Names
➢ Class naming rules, using suffix “Error” is recommended e.g. LimitNotExpiredError

❖ Constants
➢ Use all caps SNAKE_CASE e.g. DATABASE_URL

❖ Functions/Variables
➢ Use standard snake_case e.g. def final_score(), team_score

❖ Function/Method Arguments
➢ Self(first to instance methods), cls(first to class methods), a trailing _ to avoid clashes with

keywords(class_ is better than clss)
❖ Methods and Instance Variables

➢ Function naming rules, 1 leading _ for non public, 2 leading __ to avoid parent/child clashes

Linters
❖ What is a Linter?

❖ Logical Lint
➢ Code errors
➢ Dangerous code patterns
➢ Code with potentially unintended results

❖ Stylistic Lint
➢ Code not conforming to conventions and style guides

Linters for Python
❖ IDEs

➢ Mostly stylistic
❖ Pylint

➢ Logical and Stylistic
❖ pycodestyle

➢ Stylistic
❖ pydocstyle

➢ Stylistic
❖ PyFlakes

➢ Logical

When to Check?
❖ As you write it
❖ When it’s checked in
❖ When running your tests

Idiomatic Python
“An idiom is a phrase that doesn't make literal sense, but

makes sense once you're acquainted with the culture in which
it arose.”

For programming?

“Things you do daily for development in a particular language
that are familiar and meaningful to those who work in same

language”

Common Python Idioms
❖ Swap variables without using temp variable

➢ a, b = b, a
❖ Do not compare directly to singletons like True, False, None or 0
❖ Non Idiomatic: if foo == True:
❖ Idiomatic: if foo: or if foo is None:
❖ Use ‘is not’ instead of ‘not … is’
❖ Non Idiomatic: if not foo is None:
❖ Idiomatic: if foo is not None:
❖ Empty sequences are also False. This includes [], { }, ()

Repeating Variable Name in if Statement

Non Idiomatic:

Idiomatic:

For Loops
Other programming languages:

Idiomatic Python: Use the ‘in’ operator

Python:

Looping Backwards
Other programming languages:

Idiomatic Python: Use 'reversed'

Python:

For Loops

Tracking Index of for loop

Non Idiomatic:

Idiomatic: Use ‘enumerate’

For Loops
Using for … else syntax

Non Idiomatic:

Idiomatic: Use ‘else’

Using 'iter' to Check for Sentinel Value:

Better Way

Strings
❖ Use string methods instead of the string module

➢ String methods are faster
❖ Use ‘’.startswith() and ‘’.endswith() instead of slicing for prefix or suffix

checking
➢ Cleaner and less prone to error

❖ Use ‘’.join() while creating string from list elements instead of using the ‘+’
operator

Non Idiomatic:

Idiomatic:

Context Managers

❖ Objects to be used with the with statement
❖ Make resource management more explicit and safer
❖ Separates business logic from administrative logic

Non Idiomatic:

Idiomatic:

Context Managers - Examples

Better Way

Context Managers - Examples

Better Way

Context Managers - Examples

❖ Changing the standard output to a file
➢ Use redirect_stdout(file) context manager

❖ Modifying some variable in temporary context
➢ Use localcontext(Context) context manager

Lists
❖ Creating a length-N list of the same thing

➢ Use the python list ‘*’ operator to create simple and nested lists

Idiomatic Way:

Lists - Unpacking
❖ Use the ‘*’ operator to represent the rest of the list instead of slicing

Non Idiomatic:

Idiomatic:

❖ Use '_' as placeholder or throwaway variable

List Comprehension

❖ Provide a concise and easy way to create/transform/filter lists
❖ Consists of brackets containing an expression followed by for and/or if

clauses
❖ For and if clauses can change places
❖ Always returns result as a new list
❖ Basic Syntax

➢ [expression for item in list if conditional]

➢ [expression if conditional for item in list]

List Comprehension

Double the value of each element in a list

Non Idiomatic:

Idiomatic:

List Comprehension
Double the value of every even element in a list

Non Idiomatic:

Idiomatic:

Generator Expressions

❖ All list comprehensions can be transformed into generator expressions
❖ Remove the square brackets … DONE

❖ Why??
❖ Better and a lot more faster

Updating Lists

Better Way

Dictionaries

Use dict.get() with default parameter to provide default values

Non Idiomatic:

Idiomatic:

Counting with Dictionaries
Non-Idiomatic:

Idiomatic:

Dictionaries
Use dict comprehensions to build a dict more efficiently and beautifully

Idiomatic:

Non Idiomatic:

Looping Over Dictionary Keys

Which one is
better and
why?

Looping Over Dictionary Keys and Values

Which one
is the best
and why?

Cautions!!!
❖ Idioms and language features are to increase readability and

maintainability
❖ Not to impress other developers
❖ Do not use them for the sake of using them
❖ "With power comes great responsibilities"

References and Further Readings
❖ https://www.pythonforbeginners.com/basics/list-comprehensions-in-python
❖ https://www.codementor.io/blog/pythonic-code-6yxqdoktzt
❖ https://www.python.org/dev/peps/pep-0008/
❖ https://towardsdatascience.com/how-to-be-pythonic-and-why-you-should-car

e-188d63a5037e
❖ https://realpython.com/python-code-quality/
❖ “Writing Idiomatic Python” by Jeff knupp
❖ Raymond Hettinger Talk: https://www.youtube.com/watch?v=anrOzOapJ2E
❖ https://www.youtube.com/watch?v=_O23jIXsshs&t=1390s

https://www.pythonforbeginners.com/basics/list-comprehensions-in-python
https://www.codementor.io/blog/pythonic-code-6yxqdoktzt
https://www.python.org/dev/peps/pep-0008/
https://towardsdatascience.com/how-to-be-pythonic-and-why-you-should-care-188d63a5037e
https://towardsdatascience.com/how-to-be-pythonic-and-why-you-should-care-188d63a5037e
https://realpython.com/python-code-quality/
https://www.youtube.com/watch?v=anrOzOapJ2E
https://www.youtube.com/watch?v=_O23jIXsshs&t=1390s

Happy Idiomatic Coding!!!

