
Build Your First Cyber Forensic 
Application using Python
Gajendra Deshpande
https://gcdeshpande.github.io



Outline of the Talk

 Introduction to digital crimes, digital forensics, the process of 
investigation, and the collection of evidence. 

 Setting up Python for forensics application development 

 Built-in functions and modules for forensic tasks 

 Forensic Indexing and searching 

 Hash functions for forensics

 Forensic Evidence extraction 

 Meta data forensics

 Using Natural Language Tools in Forensics 

 Summary



Cyber Crime Statistics
 The Internet Crime Report for 2019, released by USA’s Internet Crime Complaint

Centre (IC3) of the Federal Bureau of Investigation, has revealed top 4 countries that
are victims of internet crimes.

 USA-4,67,361; UK-93,796; Canada-33,000; India-27,248 (2018 data)

 According to RSA report (2015), mobile transactions are rapidly growing and
cyber criminals are migrating to less protected ‘soft’ channels.

 According to report by Norton (2015), an estimated 113 million Indians lost about
Rs. 16,558 on an average to cybercrime

 According to an article published in Indian Express on 19th November 2016, Over
55% Millennials in India Hit by Cybercrime.

 A recent study by the CheckPoint Research has recorded over 1,50,000 cyber-
attacks every week during the COVID-19 pandemic. There has been an increase of
30% in cyber-attacks compared to previous weeks.



Digital Forensics

 Forensic science is the use of scientific methods or expertise to investigate crimes or
examine evidence that might be presented in a court of law.

 Cyber Forensics is investigation of various crimes happening in the cyber space.

 Examples of cyber-attacks include phishing, ransomware, fake news, fake medicine,
extortion, and insider frauds.

 According to DFRWS, Digital Forensics can be defined as “the use of scientifically
derived and proven method toward the preservation, collection, validation,
identification, analysis, interpretation, documentation, and presentation of digital
evidence derived from digital sources for the purpose of facilitating or furthering the
reconstruction of events found to be criminal, or helping to anticipate unauthorized
actions shown to be disruptive to planned operations.”



Digital Forensics Investigation Process

• Identification

• Collection

• Validation

• Examination

• Preservation

• Presentation



Daubert Standard and Python
 In United States federal law, the Daubert standard is a rule of evidence regarding the

admissibility of expert witness testimony. A party may raise a Daubert motion, a special motion
in limine raised before or during trial, to exclude the presentation of unqualified evidence to the
jury.

 Illustrative factors: The Court defined "scientific methodology" as the process of formulating
hypotheses and then conducting experiments to prove or falsify the hypothesis, and provided a
set of illustrative factors (i.e., not a "test"). Pursuant to Rule 104(a), in Daubert the U.S. Supreme
Court suggested that the following factors be considered:

 Has the technique been tested in actual field conditions (and not just in a laboratory)?

 Has the technique been subject to peer review and publication?

 What is the known or potential rate of error?

 Do standards exist for the control of the technique's operation?

 Has the technique been generally accepted within the relevant scientific community?

Source: https://en.wikipedia.org/wiki/Daubert_standard

https://en.wikipedia.org/wiki/Daubert_standard


Daubert Standard and Python
 In 2003, Brian Carrier [Carrier] published a paper that examined rules of evidence

standards including Daubert, and compared and contrasted the open source and
closed source forensic tools. One of his key conclusions was, “Using the guidelines of
the Daubert tests, we have shown that open source tools may more clearly and
comprehensively meet the guideline requirements than would closed source tools.”

 The results are not automatic of course, just because the source is open. Rather,
specific steps must be followed regarding design, development, and validation.

 Can the program or algorithm be explained? This explanation should be explained in words,
not only in code.

 Has enough information been provided such that thorough tests can be developed to test the
program?

 Have error rates been calculated and validated independently?

 Has the program been studied and peer reviewed?

 Has the program been generally accepted by the community?

Source: Python Forensics by Chet Hosmer



Setting up Python for forensics 

application development

 Factors

 Your background and organization support

 Choosing third party libraries

 IDEs and their features

 Installation (Operating System)

 Right version of Python

 Graphical vs Shell



Built-in Functions and Modules 

Source: https://stackoverflow.com/questions/45528559/retrieve-all-builtin-functions

dir(__builtins__)

https://stackoverflow.com/questions/45528559/retrieve-all-builtin-functions






Forensic Indexing and Searching

 You can use simple file search and index() function



Whoosh: Forensic Indexing and Searching
 Whoosh was created and is maintained by Matt Chaput. It was originally

created for use in the online help system of Side Effects Software’s 3D
animation software Houdini.

 Pythonic API.

 Pure-Python.

 Fielded indexing and search.

 Fast indexing and retrieval

 Pluggable scoring algorithm (including BM25F), text analysis, storage, posting
format, etc.

 Powerful query language.

 Pure Python spell-checker



Whoosh: Forensic Indexing and Searching

Source: https://whoosh.readthedocs.io/en/latest/quickstart.html

https://whoosh.readthedocs.io/en/latest/quickstart.html


Hash Functions for Forensics

Source: https://www.journaldev.com/16035/python-hashlib

https://www.journaldev.com/16035/python-hashlib


Hash Functions for forensics



Forensic Evidence Extraction
 Pillow is the friendly PIL fork by Alex Clark and Contributors. PIL is the Python

Imaging Library by Fredrik Lundh and Contributors.

 The Python Imaging Library adds image processing capabilities to your
Python interpreter.

 This library provides extensive file format support, an efficient internal
representation, and fairly powerful image processing capabilities.

 The core image library is designed for fast access to data stored in a few
basic pixel formats. It should provide a solid foundation for a general image
processing tool.

Source: https://pillow.readthedocs.io/en/stable/

https://pillow.readthedocs.io/en/stable/


Forensic Evidence Extraction

from PIL.EXIFTags import TAGS

EXIFTAGS = TAGS.items()

print(EXIFTags)

from PIL.ExifTags import GPSTAGS

gps=GPSTAGS.items()

print(gps)

from PIL import Image

from PIL.ExifTags import TAGS, GPSTAGS

pilImage=Image.open("C:\\Users\\gcdeshpande\\Desktop\\image.png")

ExifData = pilImage._getexif()

imgExif = ExifData.items()

print(imgExif)



Pyscreenshot
 Pyscreenshot tries to allow to take screenshots without installing 3rd party

libraries. It is cross-platform but mainly useful for Linux based distributions.

 Features: Cross-platform wrapper; Capturing the whole desktop or an area;
pure Python library; Supported Python versions: 2.7, 3.6, 3.7, 3.8;
Interactivity is not supported; Mouse pointer is not visible.

 Performance is not a target for this library, but you can benchmark the
possible settings and choose the fastest one.

Installation

$ python3 -m pip install Pillow pyscreenshot

Source: https://github.com/ponty/pyscreenshot

https://github.com/ponty/pyscreenshot


Pyscreenshot – Full Screen



Pyscreenshot – Part of Screen



Pyscreenshot - Performance



Pyscreenshot – Performance



Pyscreenshot – Force backend



Metadata Forensics
 Mutagen is a Python module to handle audio metadata. 

 It supports ASF, FLAC, MP4, Monkey’s Audio, MP3, Musepack, Ogg Opus, Ogg FLAC, 

Ogg Speex, Ogg Theora, Ogg Vorbis, True Audio, WavPack, OptimFROG, and AIFF 

audio files. All versions of ID3v2 are supported, and all standard ID3v2.4 frames are 

parsed. It can read Xing headers to accurately calculate the bitrate and length of 

MP3s. ID3 and APEv2 tags can be edited regardless of audio format. It can also 

manipulate Ogg streams on an individual packet/page level.

 Mutagen works with Python 3.6+ (CPython and PyPy) on Linux, Windows and macOS, 

and has no dependencies outside the Python standard library. 

Source: https://mutagen.readthedocs.io/en/latest/

https://mutagen.readthedocs.io/en/latest/


Metadata Forensics
Installation: python3 -m pip install mutagen

The File functions takes any audio file, guesses its type and returns a FileType instance or None



Metadata Forensics

The File functions takes any audio file, 

guesses its type and returns a FileType

instance or None

The following example gets the length 

and bitrate of an MP3 file.



Metadata Forensics
PyPDF2 - Pure-Python library built as a PDF toolkit. It is capable of:

 extracting document information (title, author, …)

 splitting documents page by page

 merging documents page by page

 cropping pages

 merging multiple pages into a single page

 encrypting and decrypting PDF files

 It is a useful tool for websites that manage or manipulate PDFs.

Source: https://pypi.org/project/PyPDF2/

https://pypi.org/project/PyPDF2/


Metadata Forensics
 pefile is a multi-platform Python module to parse and work with Portable Executable 

(PE) files. Most of the information contained in the PE file headers is accessible, as 

well as all the sections' details and data.

 The structures defined in the Windows header files will be accessible as attributes in 

the PE instance. The naming of fields/attributes will try to adhere to the naming 

scheme in those headers. Only shortcuts added for convenience will depart from that 

convention.

 pefile requires some basic understanding of the layout of a PE file — with it, it's 

possible to explore nearly every single feature of the PE file format.

Source: https://github.com/erocarrera/pefile

https://github.com/erocarrera/pefile


Metadata Forensics
Some of the tasks that pefile makes possible are:

 Inspecting headers

 Analyzing of sections' data

 Retrieving embedded data

 Reading strings from the resources

 Warnings for suspicious and malformed values

 Basic butchering of PEs, like writing to some fields and other parts of the PE

 This functionality won't rearrange PE file structures to make room for new fields, so use 

it with care.

 Overwriting fields should mostly be safe.

 Packer detection with PEiD’s signatures

 PEiD signature generation



Using Natural Language Tools

 Examine the text for evidence using NLP concepts

 NLTK, spaCy, Textacy

 Stanza, Polyglot

 inltk, indic-nlp



Summary

 It is very important to follow the standard procedure laid by law
enforcement agencies during investigation process.

 There are many open source as well as commercial tools for
digital forensics. Learning to develop your own tool is
advantageous.

 Many tools written in Python are pure Python implementations.
And most importantly Python and Open Source tools comply
with Daubert Standard.





Widescreen Test Pattern (16:9)

Aspect Ratio Test

(Should appear 

circular)

16x9

4x3


