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UNDERSTANDING THE NEEDS OF THE BUSINESS AND THE MAKING THE MOST OUT OF ML FRAMEWORKS AND ML
CUSTOMERS PLATFORMS

KNOWING WHEN TO WRITE PRODUCTION-LEVEL PYTHON WORKING WITH AUTOMATED ML BIAS DETECTION AND ML
CODE EXPLAINABILITY CAPABILITIES
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USING PYTHON DESIGN PATTERNS AND OPTIMIZING COSTS BY USING TRANSIENT ML INSTANCES
METAPROGRAMMING TECHNIQUES FOR TRAINING MODELS

UTILIZING CONTINUOUS INTEGRATION AND DEPLOYMENT

PIPELINES SECURING MACHINE LEARNING ENVIRONMENTS
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KNOWING WHEN TO WRITE PRODUCTION-LEVEL PYTHON CODE

MACHINE LEARNING MACHINE LEARNING
PREDICTION ENDPOINT VS EXPERIMENT

[FLASK] [JUPYTER NOTEBOOK]




ENFORCING PRACTICAL PYTHON CODING GUIDELINES

20-LINE RULE

AVOIDANCE OF WRITE TESTABLE
TRY-CATCH BLOCKS PYTHON CODE




USING PYTHON DESIGN PATTERNS AND METAPROGRAMMING TECHNIQUES

WRITE YOUR OWN
CONVENIENCE LIBRARY!

(when it makes sense)
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MAKING THE MOST OUT OF ML FRAMEWORKS AND ML PLATFORMS

Data Collection

Data Preparation and Cleaning . .

Data Visualization and Analysis

O Feature Engineering - . - .
I Model Training and Parameter Tuning . . . . . .

Model Evaluation . .

O Model Deployment .
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PREDICTION ENDPOINT

API GATEWAY

PREDICTION ENDPOINT

API GATEWAY

PREDICTION ENDPOINT

API GATEWAY

LAMBDA + SCIKIT-LEARN

LAMBDA + TENSORFLOW

LAMBDA + FB PROPHET
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MODEL DEPLOYED IN AN EC2 INSTANCE

MODEL DEPLOYED IN A CONTAINER IN AN EC2 INSTANCE

BUILT-IN ALGORITHM + SAGEMAKER ENDPOINT

CUSTOM CONTAINER + SAGEMAKER ENDPOINT
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MODEL DEPLOYED INSIDE A LAMBDA FUNCTION

LAMBDA TRIGGERING A SAGEMAKER ENDPOINT

API GATEWAY MAPPING TEMPLATES + SAGEMAKER

MODEL DEPLOYED IN FARGATE
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SAGEMAKER MULTI-MODEL ENDPOINT

SAGEMAKER MULTI-CONTAINER ENDPOINT

SAGEMAKER A/B TESTING SETUP USING PRODUCTION VARIANTS

MODEL DEPLOYED INSIDE A LAMBDA FUNCTION + CONTAINER
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CLASS IMBALANCE

TREATMENT
EQUALITY
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&

from sagemaker import clarify

processor = clarify.SageMakerClarifyProcessor (
role=role,
instance_count=1,
instance_type='ml.m5.large',
sagemaker session=session)

data config = clarify.DataConfig(
s3 data input path=s3 training data path,
s3 _output path=s3 output_path,
label="'label',
headers=training data.columns.to_list(),
dataset type='text/csv')




WORKING WITH AUTOMATED ML BIAS DETECTION AND ML EXPLAINABILITY CAPABILITIES

bias config = clarify.BiasConfig(
label values_or_threshold=[1],
facet name='a',
facet values or threshold=[5])

processor.run_pre_ training bias(
data config=data_config,
data bias_config=bias config,
methods=['CI'])

processor.latest job.outputs[0].destination
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{
"version": "1.0",
“"pre_training_bias_metrics": {
"label": "label",
"facets": {
Nt T
{
"value_or_threshold": "(5.0, 13.99152988349206]",
"metrics": [
{
"nam": IICI"'
"description": "Class Imbalance (CI)",
“"value": ©.9573333333333334
}
]
}
]
},
"label_value_or_threshold": "1"
}
}
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WORKING WITH AUTOMATED ML BIAS DETECTION AND ML EXPLAINABILITY CAPABILITIES
@

"version": "1.0",
"explanations": {
"kernel_shap": {
"label®": {
“"global_shap_values": {
"a": 0.1173995901699019,
"b": 0.37360024663733005,
"c": 0.01740283967164966,
"d": 0.015364162067494701

},
"expected_value": 0.34422817826271057
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OPTIMIZING COSTS BY USING TRANSIENT ML INSTANCES FOR TRAINING MODELS

DOWNLOAD

ml.m5.2xlarge
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SECURING MACHINE LEARNING ENVIRONMENTS

Joblib

Navigation

Why joblib: project goals
Installing joblib

On demand recomputing:
the Memory class
Embarrassingly parallel
for loops

Persistence

= Use case

= A simple example

= Persistence in file objects
= Compressed joblib pickles

Examples
Development

joblib.Memory
joblib.Parallel
joblib.dump
joblib.load

Persistence

Use case

joblib.dump() and joblib.load() provide a replacement for pickle to work efficient-
ly on arbitrary Python objects containing large data, in particular large numpy arrays.

Warning:

joblib.dump() and joblib.load() are based on the Python pickle serializa-
tion model, which means that arbitrary Python code can be executed when
loading a serialized object with joblib.load().

joblib.load() should therefore never be used to load objects from an untrust-
ed source or otherwise you will introduce a security vulnerability in your
program.

Note:

As of Python 3.8 and numpy 1.16, pickle protocol 5 introduced in PEP 574 sup-
ports efficient serialization and de-serialization for large data buffers natively
using the standard library:

pickle.dump(large_object, fileobj, protocol=5)
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Thanks!

FEEL FREE TO REACH OUT AND CONNECT:

EMAIL: joshua.arvin.lat@gmail.com
LINKEDIN: https://www.linkedin.com/in/joshualat/



