Python Memory
Understanding

By Nisarg Shah

HELLO!

Undergrad CS Student Crazy Developer - Love creating Bugs!
Software Developer intern eFountain® w STPAE W ES gér’gﬁ}

CONNECT WITH ME!
€& iamnisarg.in

) nisargl499

[nisargshahl4

X nisshah1499egmail.com

Today's Talk

e Python Objects

e Memory Storage

e GGarbage Collection

e Reference counting and Circular reference
e Working of GC Algorithms

Heard of only
Objects

o Fveryt
refere

Python version : 3.8.5

ning has an unique ID, type, value and

nce count

o CPython
° id()
° type()

=>> variable

=9

»>> id(variable)

9785152

»>> type(variable)
<class 'int'=>

Memory Storage

e Heap

o Objects

o Instances
e Stack

o Methods

e Python Manager : PyMalloc
o Memory allocation
o Speeds up memory operations

Hundreds of objects

Long running python processes

Lot's of memory usage

If mistake in memory de-allocation, program can be
crashed

Garbage collection

e Tracks which objects to be deallocated
e Automatic deallocation
e Programmer relief

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII
AAAAAAAAAAAAAAA
IIIIIIIIIIIIIII
...............
AAAAAAAAAAAAAAA

IIIIIIIIIIIIIII

...............

AAAAAAAAAAAAAAA

IIIIIIIIIIIIIII

GC algorithms

e Reference counting algo
o Easy
o Efficient
o Straightforward
e Generational GC
© some what tricky
o optional, can be manually
triggered

Reference count

All properties are automatically detected by python

3 reference 1
count

Count++

b=a

c=19

Get count : type integer
import sys

sys.getrefcount(object) m

3 b reference
count

=»> 11 = [1,2,3]
>>> 1d(11)
140602549677440
=>>»> L2 = 11

>>> 1d(12)
14060254967 7440
==> 1mport copy

>>> 13 = copy.copy(l1l)
>>> 1d(13)
140602549668096

=== 11 = [1,3,4]
>>> 1d(11)
140602549657088

Lists!

Reference count works same with lists
But if you use copy, it will be another object

Circular reference

listl = []
listl. (11)

Objectl = {}
Object2 = {}
Objectl["second"] = Object2
Objectl["first"] = Objectl

Ref counting

GC algo

e reference count ==

e Objects referenced in another object
o1 =1[1,2,3]
o |2 =14,5,6] and append |1

e Global variables count!=0

e Variables defined inside block ?
e Function execution is completed ?
e Manually delete the object?

o del() method

def foo(tempName):
tempName = tempName + " Shah"
print("My name is ", tempName)

L e e e e e e e e o if _ name == " main_":
[) | | A | | A [) | | A [| A [) | | A rn }; l"lll‘[a ITI e — ’ FIJ :l' 5 a II.‘- (;])
foo(myName)

Issues with RC algorithm

e Weak algorithm
e Can't detect Circular reference
e Memory and performance issues

But, RC is easy and objects are deleted immediately
when they are of no use!

Generational GC

Detects cycles Delete unreached/unused
objects

Trace based garbage algorithm

Not in real time

if Newly Created Objects:
ihsert into Generation 0

Check for references:
Discard necessary objects
insert remaining into Generation 1

Check Generation 1 for referneces:
Discard necessary objects
insert remaining into Generation 1
Check Generation 2 for referneces:
Discard necessary objects

Overview of working

| var A

L |
link 1 link 2 link 3 link 4

ref count: 2 ref count: 1 ref count: 1 ref count: 1
ge_ref: 2 ge_ref: 1 gc_ref: 1 gc_ref: 1
A) [J

Taken from : https://devguide.python.org/garbage_collector/

Objects to Scan

Unreachable ?

link 1 link 2 link 3
ref count; 2 ref count: 1 ref count; 1

gc ref: 1 . gc_ref: 0 . gc_ref. O

link 1 link 2
ref count; 2 ref count; 1

gc_ref: 1 . gc_ref: 0 ..E

link 4
ref count: 1

I gc_ref: 0

link 2

ref count: 1
UNREACH

link 4
ref count: 1
UNREACH

Unreachable 7

Want to know more?

e Design of CPython’s Garbage Collector

e https://docs.python.org/3.6/library/gc.html
o gc.garbage()
o gc.collect()

e Python Memory Model blogs

e Tracing Garbage Collection : Wikipedia

Thank you

CONNECT WITH ME!
& iamnisarg.in
O)nisargl499

[)nisargshahl4 .
inisshahl499egmail.com 'NlSC"'Q Shah

